ASSESSMENT OF TV IMAGES QUALITY ATTRIBUTES
Abstract
The results of studies on the evaluation criteria of image quality (IQA). Application of IQA include areas such as machine vision, medical imaging, multimedia communication, entertainment and other types of image processing operations. Systems where embedded algorithms can replace IQA people for evaluation of image quality in real time are in high demand. Like most of the images, observers consider TV images; the best method for evaluating the image quality is a subjective test. Nevertheless, road tests subjective, time consuming and difficult to perform in real time applications. The article analyzes the objective quality indicators, taking into account the properties of the viewReferences
1. Wang Z., “Applications of objective image quality assessment methods”, IEEE Signal Processing Magazine, 28(6), 2011, pp.137142.
2. Gao X., W. Lu, D. Tao and Li X., “Image quality assessment and human visual system”, Visual Communications and Image Processing, International Society for Optics and Photonics, July 2010.
3. Rafael C. Gonzalez and Richard E. Woods: Digital Image Processing, 3rd edition, Pearson Educa-tion Inc., 2008.
4. Chandler D. M. “Seven challenges in image quality assessment: past, present, and future research”, ISRN Signal Processing, 2013.
5. Liu T. J., Y. C. Lin, W. Lin and Kuo, C. C. J., “Visual quality assessment: recent developments, coding applications and future trends”, APSIPA Transactions on Signal and Information Processing, 2013, 2, e4.
6. Moorthy A., K. and A. C. Bovik, “A two-step framework for constructing blind image quality indices”, IEEE Signal Processing Letters, Vol. 17, No.5, 2010, pp. 513–516.
7. Wang Z., A.C. Bovik, “Reduced-and noreference image quality assessment”, IEEE Signal Processing Magazine, Vol. 28 No. 6, 2011, pp. 29–40.
8. Saad M. A., A. C. Bovik and C. Charrier, “A DCT statistics-based blind image quality index”, IEEE Signal Processing Letters, Vol. 17, No. 6, 2010, pp. 583–586.
9. Saad M. A., A. C. Bovik and C. Charrier, “Blind image quality assessment: A natural scene statistics approach in the DCT domain”, IEEE Trans. IP, Vol. 21, No.8, 2012, pp. 3339–3352.
10. Moorthy A. K., A. C. Bovik, “Blind image quality assessment: From natural scene statistics to perceptual quality”, IEEE Trans. IP, Vol. 20, No.12, 2011, pp. 3350–3364.
11. Mittal A., A. K. Moorthy, A. C. Bovik, “Noreference image quality assessment in the spatial domain”, IEEE Trans. IP, Vol. 21, No. 12, 2012, pp. 4695–4708.
12. Li Q., Z. Wang, “Reduced-reference image quality assessment using divisive normalization-based image representation”, IEEE Journal of Selected Topics in Signal Processing, Vol. 3, No. 2, 2009, pp. 202–211.
13. Gao X., W. Lu, D Tao, X. Li, “Image quality assessment based on multiscale geometric analysis”, IEEE Trans. IP, Vol. 18 No. 7, 2009, pp. 1409–1423.
14. Soundararajan R., A. C. Bovik, “RRED indices: Reduced reference entropic differencing for image quality assessment”, IEEE Trans. IP, Vol.21(2), 2012, pp. 517–526.
15. Rehman A., Z Wang, “Reduced-reference image quality assessment by structural similarity estimation”, IEEE Trans. IP, Vol. 21, No. 8, 2012, pp. 3378-3389.
16. Wang Z., A. C. Bovik, “Mean squared error: love it or leave it? A new look at signal fidelity measures”. IEEE Signal Processing Magazine, Vol. 26, No.1, 2009, pp. 98–117.
17. Damera-Venkata N., T. D.Kite, W. S.Geisler, B. L. Evans and A. C. Bovik, “Image quality assessment based on a degradation model”, IEEE Trans. IP, Vol.9 (4), 2000, pp. 636–650.
18. Wang Z., A. C.Bovik. and L. Lu, “Why is image quality assessment so difficult?”, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), May 2002, Vol. 4, pp. IV–3313.
19. Wang Z. & A. C. Bovik, “A universal image quality index”, IEEE Signal Processing Letters Vol. 9, No. 3, 2002, pp. 81–84.
20. Wang, Z., A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity”, IEEE Trans. IP, Vol.13, No.4, 2004, pp.600–612
21. Chen G. H., C. L. Yang and S. L. Xie, “Gradient-based structural similarity for image quality assessment”, IEEE International Conference on Image Processing, 2006, pp. 2929–2932.
22. Wang Z., E. P. Simoncelli and A. C.Bovik, (2003, November). “Multiscale structural similarity for image quality assessment”, Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, IEEE, 2004. Vol. 2, pp. 1398–1402.
23. Sheikh H. R., A. C. Bovik and De Veciana, G., “An information fidelity criterion for image quality assessment using natural scene statistics”, IEEE Trans. IP, Vol. 14, No.12, 2005, pp. 2117–2128. Journal of Theoretical and Applied Information Technology 10 th July 2014. Vol. 65 No.1 © 2005 - 2014 JATIT & LLS. All rights reserved.
24. Sheikh H. R., A. C. Bovik, “Image information and visual quality”, IEEE Trans. IP, Vol. 15, No. 2, 2006, pp. 430–444.
25. Aja-Fernandez, S., San-José-Estépar, R., Alberola-Lopez, C. & Westin, C. F., “Image quality assessment based on local variance”, Proceedings of 28th IEEE International Conference, Eng. Med. Biol. Soc.(EMBC), 2006, August, pp. 4815–4818.
26. Chandler D. M., S. S. Hemami, “VSNR: A wavelet-based visual signal-to-noise ratio for natural images”, IEEE Trans. IP, Vol. 16, No. 9, 2007, pp. 2284–2298.
27. Fu, W., Gu X., Y. Wang, “Image quality assessment using edge and contrast similarity”, IEEE International Joint Conference on Neural Networks, (IJCNN), 2008 June, pp. 852–855.
28. Han H. S., D. O. Kim, R. H. Park, “Structural information-based image quality assessment using LU factorization”, IEEE Transactions on Consumer Electronics, 2009, Vol. 55, No. 1, pp. 165–171.
29. Larson E. C. & Chandler D. M., “Most apparent distortion: full-reference image quality assessment and the role of strategy”. Journal of Electronic Imaging, 2010, Vol. 19, No. 1, 011006–011006.
30. Moorthy A. K., A. C.Bovik, “Visual importance pooling for image quality assessment”, IEEE Journal of Selected Topics in Signal Processing, Vol. 3, No.2, 2009, pp. 193–201.
31. Li C., A. C. Bovik, “Content-partitioned structural similarity index for image quality assessment”, Signal Processing: Image Communication, Vol. 25, No.7, 2010, pp. 517–526.
32. Zhang L., D. Zhang, X. Mou, “RFSIM: A feature based image quality assessment metric using Riesz transforms” 17th IEEE International Conference on Image Processing (ICIP), 2010 September, pp. 321–324.
33. Wang Z. and Li Q., “Information content weighting for perceptual image quality assessment”, IEEE Trans. IP, Vol. 20, No.5, 2011, pp. 1185–1198.
34. Zhang L., D. Zhang, X. Mou “FSIM: a feature similarity index for image quality assessment”, IEEE Trans. IP, Vol.20, No.8, 2011, pp. 2378–2386. [35] Li S., Zhang F., Ma L. & Ngan K. N., “Image quality assessment by separately evaluating detail losses and additive impairments”, IEEE
35. Transactions on Multimedia, Vol.13, No.5, 2011, pp. 935–949.
36. Li J., K. Wu, X. Zhang, M. Ding, “Image quality assessment based on multi-channel regional mutual information”, AEU-Int. Journal of Electronics and Communications, Vol.66, No.9, 2012, pp. 784–787.
37. Fei X., L. Xiao, Y. Sun, Z. Wei, “Perceptual image quality assessment based on structural similarity and visual masking”, Signal Processing: Image Communication, Vol.27, No.7, 2012, pp. 772–783.
38. Zhang L., H. Li, “SR-SIM: A fast and high performance IQA index based on spectral residual”, 19th IEEE International Conference on Image Processing (ICIP), 2012, September, pp. 1473–1476.
39. Zhang X., X. Feng, W. Wang, W. Xue “Edge strength similarity for image quality assessment”, IEEE Signal Processing Letters, Vol. 20, No.4, 2013, pp. 319–322.
40. Yazhou Yang, Dan Tu, Guangquan Cheng, “Image Quality Assessment Using Histogram of Oriented Gradients”, Fourth International Conference on Intelligent Control and Information Processing (ICICIP), 2013, June Beijing, China
41. Sheikh H. R., Z. Wang, L. Cormack, A. C. Bovik, “LIVE image quality assessment database release 2”, 2005, http://live.ece.utexas.edu/research/quality
42. Ponomarenko N., V. Lukin, A. Zelensky, K. Egiazarian, M. Carli, F. Battisti, “TID2008-A database for evaluation of fullreference visual quality assessment metrics”, Advances of Modern Radioelectronics, 2009, Vol. 10, No.4, pp. 30–45.
43. Subjective quality assessment IRCCyN/IVC database;http://www2.irccyn.ec-nantes.fr/ivcdb/
44. MICT Image Quality Evaluation Database, http://mict.eng.u-toyama.ac.jp/mictdb.html
45. Zhang L., L. Zhang, X. Mou, D. Zhang, “A comprehensive evaluation of full reference image quality assessment algorithms”, “19th IEEE International Conference on Image Processing (ICIP), 2012, September, pp. 1477–1480.
46. Sheikh H. R., M. F. Sabir, A. C. Bovik, “A statistical evaluation of recent full reference image quality assessment algorithms”, IEEE Trans. IP, 2006, Vol. 15, No.11, 2006, pp. 3440–3451.
47. Lin Zhang, Lei Zhang, “Research on Image Quality Assessment”, Web page, http://sse.tongji.edu.cn/
linzhang/IQA/IQA.htm
48. Joy K.R., E. Gopala Krishna Sarma, “Recent developments in image quality assessment algorithms: a review” Journal of Theoretical and Applied Information, Technology 10 th July 2014. Vol. 65 No.1 © 2005 - 2014 J
2. Gao X., W. Lu, D. Tao and Li X., “Image quality assessment and human visual system”, Visual Communications and Image Processing, International Society for Optics and Photonics, July 2010.
3. Rafael C. Gonzalez and Richard E. Woods: Digital Image Processing, 3rd edition, Pearson Educa-tion Inc., 2008.
4. Chandler D. M. “Seven challenges in image quality assessment: past, present, and future research”, ISRN Signal Processing, 2013.
5. Liu T. J., Y. C. Lin, W. Lin and Kuo, C. C. J., “Visual quality assessment: recent developments, coding applications and future trends”, APSIPA Transactions on Signal and Information Processing, 2013, 2, e4.
6. Moorthy A., K. and A. C. Bovik, “A two-step framework for constructing blind image quality indices”, IEEE Signal Processing Letters, Vol. 17, No.5, 2010, pp. 513–516.
7. Wang Z., A.C. Bovik, “Reduced-and noreference image quality assessment”, IEEE Signal Processing Magazine, Vol. 28 No. 6, 2011, pp. 29–40.
8. Saad M. A., A. C. Bovik and C. Charrier, “A DCT statistics-based blind image quality index”, IEEE Signal Processing Letters, Vol. 17, No. 6, 2010, pp. 583–586.
9. Saad M. A., A. C. Bovik and C. Charrier, “Blind image quality assessment: A natural scene statistics approach in the DCT domain”, IEEE Trans. IP, Vol. 21, No.8, 2012, pp. 3339–3352.
10. Moorthy A. K., A. C. Bovik, “Blind image quality assessment: From natural scene statistics to perceptual quality”, IEEE Trans. IP, Vol. 20, No.12, 2011, pp. 3350–3364.
11. Mittal A., A. K. Moorthy, A. C. Bovik, “Noreference image quality assessment in the spatial domain”, IEEE Trans. IP, Vol. 21, No. 12, 2012, pp. 4695–4708.
12. Li Q., Z. Wang, “Reduced-reference image quality assessment using divisive normalization-based image representation”, IEEE Journal of Selected Topics in Signal Processing, Vol. 3, No. 2, 2009, pp. 202–211.
13. Gao X., W. Lu, D Tao, X. Li, “Image quality assessment based on multiscale geometric analysis”, IEEE Trans. IP, Vol. 18 No. 7, 2009, pp. 1409–1423.
14. Soundararajan R., A. C. Bovik, “RRED indices: Reduced reference entropic differencing for image quality assessment”, IEEE Trans. IP, Vol.21(2), 2012, pp. 517–526.
15. Rehman A., Z Wang, “Reduced-reference image quality assessment by structural similarity estimation”, IEEE Trans. IP, Vol. 21, No. 8, 2012, pp. 3378-3389.
16. Wang Z., A. C. Bovik, “Mean squared error: love it or leave it? A new look at signal fidelity measures”. IEEE Signal Processing Magazine, Vol. 26, No.1, 2009, pp. 98–117.
17. Damera-Venkata N., T. D.Kite, W. S.Geisler, B. L. Evans and A. C. Bovik, “Image quality assessment based on a degradation model”, IEEE Trans. IP, Vol.9 (4), 2000, pp. 636–650.
18. Wang Z., A. C.Bovik. and L. Lu, “Why is image quality assessment so difficult?”, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), May 2002, Vol. 4, pp. IV–3313.
19. Wang Z. & A. C. Bovik, “A universal image quality index”, IEEE Signal Processing Letters Vol. 9, No. 3, 2002, pp. 81–84.
20. Wang, Z., A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity”, IEEE Trans. IP, Vol.13, No.4, 2004, pp.600–612
21. Chen G. H., C. L. Yang and S. L. Xie, “Gradient-based structural similarity for image quality assessment”, IEEE International Conference on Image Processing, 2006, pp. 2929–2932.
22. Wang Z., E. P. Simoncelli and A. C.Bovik, (2003, November). “Multiscale structural similarity for image quality assessment”, Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, IEEE, 2004. Vol. 2, pp. 1398–1402.
23. Sheikh H. R., A. C. Bovik and De Veciana, G., “An information fidelity criterion for image quality assessment using natural scene statistics”, IEEE Trans. IP, Vol. 14, No.12, 2005, pp. 2117–2128. Journal of Theoretical and Applied Information Technology 10 th July 2014. Vol. 65 No.1 © 2005 - 2014 JATIT & LLS. All rights reserved.
24. Sheikh H. R., A. C. Bovik, “Image information and visual quality”, IEEE Trans. IP, Vol. 15, No. 2, 2006, pp. 430–444.
25. Aja-Fernandez, S., San-José-Estépar, R., Alberola-Lopez, C. & Westin, C. F., “Image quality assessment based on local variance”, Proceedings of 28th IEEE International Conference, Eng. Med. Biol. Soc.(EMBC), 2006, August, pp. 4815–4818.
26. Chandler D. M., S. S. Hemami, “VSNR: A wavelet-based visual signal-to-noise ratio for natural images”, IEEE Trans. IP, Vol. 16, No. 9, 2007, pp. 2284–2298.
27. Fu, W., Gu X., Y. Wang, “Image quality assessment using edge and contrast similarity”, IEEE International Joint Conference on Neural Networks, (IJCNN), 2008 June, pp. 852–855.
28. Han H. S., D. O. Kim, R. H. Park, “Structural information-based image quality assessment using LU factorization”, IEEE Transactions on Consumer Electronics, 2009, Vol. 55, No. 1, pp. 165–171.
29. Larson E. C. & Chandler D. M., “Most apparent distortion: full-reference image quality assessment and the role of strategy”. Journal of Electronic Imaging, 2010, Vol. 19, No. 1, 011006–011006.
30. Moorthy A. K., A. C.Bovik, “Visual importance pooling for image quality assessment”, IEEE Journal of Selected Topics in Signal Processing, Vol. 3, No.2, 2009, pp. 193–201.
31. Li C., A. C. Bovik, “Content-partitioned structural similarity index for image quality assessment”, Signal Processing: Image Communication, Vol. 25, No.7, 2010, pp. 517–526.
32. Zhang L., D. Zhang, X. Mou, “RFSIM: A feature based image quality assessment metric using Riesz transforms” 17th IEEE International Conference on Image Processing (ICIP), 2010 September, pp. 321–324.
33. Wang Z. and Li Q., “Information content weighting for perceptual image quality assessment”, IEEE Trans. IP, Vol. 20, No.5, 2011, pp. 1185–1198.
34. Zhang L., D. Zhang, X. Mou “FSIM: a feature similarity index for image quality assessment”, IEEE Trans. IP, Vol.20, No.8, 2011, pp. 2378–2386. [35] Li S., Zhang F., Ma L. & Ngan K. N., “Image quality assessment by separately evaluating detail losses and additive impairments”, IEEE
35. Transactions on Multimedia, Vol.13, No.5, 2011, pp. 935–949.
36. Li J., K. Wu, X. Zhang, M. Ding, “Image quality assessment based on multi-channel regional mutual information”, AEU-Int. Journal of Electronics and Communications, Vol.66, No.9, 2012, pp. 784–787.
37. Fei X., L. Xiao, Y. Sun, Z. Wei, “Perceptual image quality assessment based on structural similarity and visual masking”, Signal Processing: Image Communication, Vol.27, No.7, 2012, pp. 772–783.
38. Zhang L., H. Li, “SR-SIM: A fast and high performance IQA index based on spectral residual”, 19th IEEE International Conference on Image Processing (ICIP), 2012, September, pp. 1473–1476.
39. Zhang X., X. Feng, W. Wang, W. Xue “Edge strength similarity for image quality assessment”, IEEE Signal Processing Letters, Vol. 20, No.4, 2013, pp. 319–322.
40. Yazhou Yang, Dan Tu, Guangquan Cheng, “Image Quality Assessment Using Histogram of Oriented Gradients”, Fourth International Conference on Intelligent Control and Information Processing (ICICIP), 2013, June Beijing, China
41. Sheikh H. R., Z. Wang, L. Cormack, A. C. Bovik, “LIVE image quality assessment database release 2”, 2005, http://live.ece.utexas.edu/research/quality
42. Ponomarenko N., V. Lukin, A. Zelensky, K. Egiazarian, M. Carli, F. Battisti, “TID2008-A database for evaluation of fullreference visual quality assessment metrics”, Advances of Modern Radioelectronics, 2009, Vol. 10, No.4, pp. 30–45.
43. Subjective quality assessment IRCCyN/IVC database;http://www2.irccyn.ec-nantes.fr/ivcdb/
44. MICT Image Quality Evaluation Database, http://mict.eng.u-toyama.ac.jp/mictdb.html
45. Zhang L., L. Zhang, X. Mou, D. Zhang, “A comprehensive evaluation of full reference image quality assessment algorithms”, “19th IEEE International Conference on Image Processing (ICIP), 2012, September, pp. 1477–1480.
46. Sheikh H. R., M. F. Sabir, A. C. Bovik, “A statistical evaluation of recent full reference image quality assessment algorithms”, IEEE Trans. IP, 2006, Vol. 15, No.11, 2006, pp. 3440–3451.
47. Lin Zhang, Lei Zhang, “Research on Image Quality Assessment”, Web page, http://sse.tongji.edu.cn/
linzhang/IQA/IQA.htm
48. Joy K.R., E. Gopala Krishna Sarma, “Recent developments in image quality assessment algorithms: a review” Journal of Theoretical and Applied Information, Technology 10 th July 2014. Vol. 65 No.1 © 2005 - 2014 J