УДК 621.372.8

ОЦЕНКА ВЛИЯНИЯ НЕЛИНЕЙНЫХ ИСКАЖЕНИЙ ОПТИЧЕСКОГО ВОЛОКНА НА КАЧЕСТВЕННЫЕ ПОКАЗАТЕЛИ КОГЕРЕНТНОЙ ВОСП

Мазур А.Д., Педяш В.В.

Одесская национальная академия связи им. А.С. Попова, 65029, Украина, г. Одесса, ул. Кузнечная, 1. pedyash@onat.edu.ua

ОЦІНКА ВПЛИВУ НЕЛІНІЙНИХ СПОТВОРЕНЬ ОПТИЧНОГО СИГНАЛУ НА ЯКІСНІ ПОКАЗНИКИ КОГЕРЕНТНОЇ ВОСП

Мазур Г.Д., Педяш В.В.

Одеська національна академія зв'язку ім. О.С. Попова, 65029, Україна, м. Одеса, вул. Кузнечна, 1. <u>pedyash@onat.edu.ua</u>

ESTIMATION OF INFLUENCE OF OPTICAL SIGNAL NON-LINEAR DISTORTIONS ON QUALITY PARAMETERS OF OPTICAL FIBER SYSTEM

Mazur A.D., Pedyash V.V.

O.S. Popov Odessa national academy of telecommunications, 1 Kuznechna St., Odessa 65029, Ukraine. pedyash@onat.edu.ua

Аннотация. Статья посвящена исследованию процесса передачи сигнала в оптической среде распространения с нелинейными искажениями. Для решения поставленной задачи использовалась имитационная модель одноканальной когерентной ВОСП, построенная в программе MatLab. Моделирование среды распространения выполнялось посредством метода Фурье расщепления по физическим факторам. На примере сигнала КАМ-4 получены зависимости Q-фактора от параметров ВОСП для скоростей передачи 10,7 Гбит/с (ОТU2) и 43,01 Гбит/с (ОTU3). Показано, что увеличение мощности сигнала передатчика от -13 дБм до +7 дБм приводит к снижению Q-фактора примерно на 30 дБ независимо от количества секций трассы. Увеличение количества оптических секций трассы от 1 до 10 приводит к снижению Q-фактора на 15-20 дБ.

Ключевые слова: оптическое волокно, когерентный прием, ВОСП, DWDM, модель, нелинейность, Q-фактор.

Анотація. Стаття присвячена дослідженню процесу передавання сигналу в оптичному середовищі поширення з нелінійними спотвореннями. Для розв'язання поставленого завдання використовувалася імітаційна модель одноканальної когерентної ВОСП, побудована в програмі MatLab. Моделювання середовища поширення виконувалося за допомогою методу Фур'є розщеплення за фізичними факторами. На прикладі сигналу КАМ-4 отримані залежності Q-фактора від параметрів ВОСП для швидкостей передавання 10,7 Гбіт/с (ОТU2) і 43,01 Гбіт/с (ОTU3). Показано, що збільшення потужності сигналу передавача від -13 дБм до +7 дБм призводить до зниження Q-фактора приблизно на 30 дБ незалежно від кількості секцій траси. Збільшення кількості оптичних секцій траси від 1 до 10 призводить до зниження Q-фактора на 15 ... 20 дБ.

Ключові слова: оптичне волокно, когерентний прийом, ВОСП, DWDM, модель, нелінійність, *Q*-фактор.

Abstract. The article investigates the signal transmisson process in the optical propagation medium with non-linear distortion. To solve this problem was used a simulation MatLab model of single-channel

coherent fiber communication system. Modeling of the propagation medium was carried out by split-step Fourier method. For example, the dependence of *Q*-factor from parameters of the system for transmission speeds of 10.7 Gb/s (OTU2) and 43,01 Gb/s (OTU3) was obtained. It is shown that increase in transmitter signal power from -13 dBm to +7 dBm reduces *Q*-factor of about 30 dB regardless of the number of track sections. Increasing the quantity of optical sections from 1 to 10 leads to a decrease in *Q*-factor of 15-20 dB.

Key words: fiber, coherent recever, fiber communication system, DWDM, model, nonlinear distortion, Q-factor.

Волоконно-оптические системы передачи (ВОСП) являются основой для создания транспортных сетей последующих поколений (СПП). За период своего существования было разработано несколько поколений данных систем передачи, отличающихся количеством используемых длин волн и методами модуляции оптического сигнала. Первые образцы ВОСП использовали одну длину волны и модуляцию оптического излучения по интенсивности. Несмотря на появление ВОСП со спектральным разделением каналов (СРК), разработчики телекоммуникационного оборудования стремятся повысить спектральную эффективность сигнала путем использования более совершенных видов модуляции (ФМ, КАМ и OFDM) [1]. Поэтому транспондеры современных коммерческих ВОСП СРК широко используют методы когерентного приема для организации каналов со скоростями передачи до 112 Гбит/с (ОТU4 ОТН). Известно, что оптическое волокно (ОВ) вносит линейные (дисперсионные) и нелинейные (эффект Керра) искажения [2]. В современных ВОСП основная часть дисперсионных искажений OB устраняется в корректорах на базе волоконных брэгговских решеток. Оставшаяся часть линейных искажений корректируется в тракте приема путем обработки сигнала с выхода фотодетектора в цифровом фильтре. Поэтому сегодня основную проблему представляют нелинейные искажения – фазовая самомодуляция и перекрестная модуляция приводят к искажению формы сигналов. Четырехволновое смешение приводит к генерации паразитных нелинейных комбинационных продуктов, попадающих в рабочую полосу частот ВОСП СРК. Минимизировать перечисленные нелинейные искажения можно использованием модуляции с постоянной энергией символа, например КАМ-4, однако исследование влияния нелинейных искажений отдельно от других шумов на параметры качества ВОСП не проводилось.

Поэтому **целью** данной статьи является исследование влияния нелинейных искажений оптического волокна на качественные характеристики когерентной ВОСП с квадратурной амплитудной модуляцией.

Наибольшую сложность при оценке параметров ВОСП представляет разработка модели середы распространения согласно нелинейному уравнению Шредингера, которое в общем случае не имеет аналитического решения. Поэтому решение поставленной задачи выполнялось при помощи имитационной модели ВОСП с когерентным приемом (рис. 1), построенной в среде MatLab R2016.

Для формирования ортогональных сигналов синфазного и квадратурного подканалов передатчик ВОСП содержит два генератора двоичной псевдослучайной последовательности (ГПСП) и два одинаковых фазовых модулятора (ФМ) с девиацией фазы π . Поскольку каждый символ КАМ-4 переносит 2 бита, скорость передачи данных в каждом подканале составляет B/2 (в два раза меньше информационной скорости ВОСП, равной B). С целью обеспечения ортогональности несущих подканалов, в передатчике используется один лазер непрерывного излучения (ЛНИ), выходной сигнал которого разделяется разветвителем (Р) и проходит через фазовращатель для получения несущей квадратурного подканала. На выходе объединителя (О) формируется сигнал со средней мощностью $P_{\rm nep}$ следующей формы:

$$E_{\rm BMX}(t) = \frac{\sqrt{P_{\rm ret1}}}{\sqrt{2}} e^{j\omega_{\rm H}t} \left[e^{j\pi a(t)} + e^{j\pi b(t)} e^{-j\pi/2} \right],\tag{1}$$

где $P_{\text{гет1}}$ – пиковая мощность гетеродина (ЛНИ) передатчика; $E_{\text{гет1}}(t)$ – сигнал гетеродина передатчика; π – девиация фазы; a(t) и b(t) – двоичные последовательности {-1;1} на выходе ГПСП1 и ГПСП2 соответственно.

Рисунок 1 – Структурная схема модели когерентной ВОСП с КАМ-4

Волоконно-оптический линейный тракт (ВОЛТ) состоит из $N_{\rm секц}$ одинаковых оптических секций, каждая из которых включает: ОВ типа SMF длиной $L_{\rm oB} = 100$ км, компенсатор хроматической дисперсии (КД) и оптический усилитель (ОУ) на базе волокна, легированного эрбием. Моделирование ОВ выполнялось методом Фурье расщепления по физическим факторам. В качестве компенсатора дисперсии использовалось устройство со следующей передаточной функцией [2]:

$$H_{\rm KL}(\omega) = \frac{1}{e^{-j\beta_2 \omega^2/2}},$$
 (2)

где β_2 – коэффициент хроматической дисперсии ОВ второго порядка.

Модель ОУ предполагала внесение усиления G со значением

$$G = e^{\alpha L_{\rm OB}} \tag{3}$$

и аддитивного шума усиленного спонтанного усиления со спектральной плотностью мощности

$$S(\omega) = 2n_{\rm cm}(G-1)h\nu, \qquad (4)$$

где *n*_{сп} – коэффициент спонтанной эмиссии ОУ; *h* – постоянная Планка; v – центральная частота оптического сигнала.

В приемнике сигнал локального лазерного осциллятора (ЛО) поступает на вход приемного оптического модуля когерентного сигнала (ПРОМ КС), содержащего

фотодетекторы и смеситель оптических сигналов на базе 3 дБ разветвителей (рис. 2) с передаточной матрицей каждого [3]:

$$\begin{bmatrix} E_{\text{вых1}} \\ E_{\text{вых2}} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -j \\ -j & 1 \end{bmatrix} \begin{bmatrix} E_{\text{вх1}} \\ E_{\text{вх2}} \end{bmatrix}.$$
(5)

Проведя на основания структурной схемы ПРОМ КС (рис 2) соответствующие преобразования, получаем следующую передаточную матрицу каскада из четырех разветвителей:

$$\begin{bmatrix} E_{3} \\ E_{1} \\ E_{4} \\ E_{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} E_{c} - E_{rer2} \\ -jE_{c} - jE_{rer2} \\ -jE_{c} - jE_{rer2} e^{j\pi/2} \\ -jE_{c} + E_{rer2} e^{j\pi/2} \end{bmatrix}$$
(6)

Рисунок 2 – Функциональная схема ПРОМ КС

Сигналы на выходе синфазного $i_{\rm c}(t)$ и квадратурного $i_{\rm k}(t)$ канала определяем по формулам:

$$i_{\pi 1}(t) = R E_1(t) E_1^*(t), \tag{7}$$

$$i_{\rm g2}(t) = R E_2(t) E_2^*(t), \tag{8}$$

$$i_{\rm \pi 3}(t) = R E_3(t) E_3^*(t), \tag{9}$$

$$i_{\rm g4}(t) = R E_4(t) E_4^*(t), \tag{10}$$

$$i_{\rm c}(t) = i_{\rm A3}(t) - i_{\rm A1}(t),$$
 (11)

$$i_{\rm K}(t) = i_{\rm A4}(t) - i_{\rm A2}(t),$$
 (12)

где R – чувствительность фотодиода (R = 1 A/Bт). В дальнейшем эти сигналы подвергаются ограничению спектра в ФНЧ Бесселя 4-го порядка с частотой среза 0,75 · B / 2.

Полученные сигналы $u_I(t)$ и $u_Q(t)$ после коррекции фазы применялись для построения диаграмм рассеяния (сигнальных созвездий) и глаз-диаграмм. В качестве

134

количественного критерия оценки параметров качества использован Q-фактор, вычисленный по отсчетам выходного сигнала (рис. 3). Рисунок показывает, что зависимость Q-фактора от момента стробирования имеет два локальных максимума, поэтому в дальнейших исследованиях необходимо всегда выполнять поиск глобального экстремума функции Q(t).

Рисунок 3 – Качественные параметры сигнала на выходе ПРОМ КС ($\alpha = 0,2 \text{ дБ/км}; D = 16,75 \text{ пс/(нм·км)}; \gamma = 1,31 \text{ 1/(Вт·км)}; L_{секц} = 100 \text{ км}; N_{секц} = 10; p_{пер}=1 \text{ дБм}; nf = 4 \text{ дБ}; B = 43,01 \text{ Гбит/с})$

Зависимость Q-фактора синфазного канала от уровня сигнала передатчика $p_{пер}$ на входе оптического волокна и количества оптических секций показана на рис. 4. Уровень мощности ЛНИ изменялся от -10 до +10 дБм, что при потере 3 дБ в объединителе соответствовало выходной мощности передатчика -13...+7 дБм. При минимальной мощности нелинейные искажения практически отсутствуют, поэтому конечное значение Q-фактора объясняется межсимвольной интерференцией сигнала в ФНЧ. Увеличение мощности сигнала на входе ВОЛТ приводит к линейному уменьшению показателей качества. Уменьшение защищенности для ВОЛТ из одной оптической секции для скоростей передачи 10,7 и 43,01 Гбит/с составляет 36 и 40 дБ соответственно. Увеличение $n_{секц}$ от 1 до 10 приводит к снижению защищенности примерно на 20 дБ в рабочем диапазоне уровней мощности сигнала от 0 дБм и выше. Для выбранного значения шум-фактора nf = 4 дБ мощность усиленного спонтанного излучения (УСИ) являлась незначительной ($P_{уси} = -29,8$ дБм для B = 43,01 Гбит/с) и не оказывала значительного влияния на Q-фактор.

Наукові праці ОНАЗ ім. О.С. Попова, 2016, № 2

Рисунок 4 – Показатели качества канала ВОСП ($\alpha = 0,2$ дБ/км; D = 16,75 пс/(нм·км); $\gamma = 1,31$ 1/(Вт·км); $L_{ceku} = 100$ км; nf = 4 дБ) со скоростью: a) 10,7 Гбит/с (ОТU2); δ) 43,01 Гбит/с (ОTU3)

В заключение можно сделать вывод о том, что поставленная в статье задача оценки влияния нелинейных искажений оптического волокна на качественные характеристики когерентной ВОСП с КАМ выполнена успешно. Полученная зависимость качества оптических каналов показала, что зависимость Q-фактора от мощности сигнала на входе ОВ носит линейный характер. Полученные кривые для скоростей 10,7 и 43,01 Гбит/с показали, что увеличение мощности сигнала передатчика от -13 до +7 дБм приводит к снижению Q-фактора примерно на 30 дБ. Увеличение количества оптических секций трассы ВОСП от 1 до 10 приводит к снижению Q-фактора на 15...20 дБ. Предложенную модель можно использовать для оценки качественных показателей ВОСП на этапе их проектирования.

ЛИТЕРАТУРА:

- 1. Agrawal G.P. Nonlinear fiber optics / Agrawal G.P. London: Academic Press, 2007. 534 p.
- 2. Seimetz M. High-Order Modulation for Optical Fiber Transmission / Seimetz M. Berlin: Springer, 2009. 252 p.
- Hoffman D. Integrated optics eight-port 90 degrees hybrid on LiNbO3 / D. Hoffman; H. Heidrich; G. Wenke; R. Langenhorst; E. Dietrich // Journal of Lightwave Technology. – 1989. – Vol. 7, No 5. – P. 794-798.

REFERENCES:

- 1. Agrawal, G. P. Nonlinear Fiber Optics. 4th ed. Amsterdam: Elsevier / Academic, 2007. Print.
- 2. Seimetz, M. High-Order Modulation for Optical Fiber Transmission. Berlin: Springer, 2007. Print.
- 3. D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst and E. Dietrich. "Integrated optics eight-port 90 degrees hybrid on LiNbO3." Journal of Lightwave Technology 7(5) (1989): 794-798. Web.