УДК 621.391

Варава Ю. В., Арбузников В. А. Варава Ю. В., Арбузніков В. О. Varava Yr. V., Arbuznikov V. A.

ПАРАМЕТРИЧЕСКИЙ МОДУЛЯТОР ТЕЛЕВИЗИОНОГО МАЛОШУМЯЩЕГО КАМЕРНОГО ВИДЕОУСИЛИТЕЛЯ

ПАРАМЕТРИЧНИЙ МОДУЛЯТОР ТЕЛЕВІЗІЙНОГО МАЛОШУМНОГО КАМЕРНОГО ВІДЕОПІДСИЛЮВАЧА

THE PARAMETRIC MODULATOR FOR TELEVISION IN CAMERA TUBE AMPLIFAER

Аннотация. В телевидении в камерных видеоусилителях на видиконе для уменьшения шумов применяются параметрические входные каскады, собственные шумы которых малы. Исследуется регулярность и квазирегулярность спектральной матрицы стационарного режима параллельно-последовательного параметрического модулятора, его передаточные характеристики.

Анотація. У телебаченні в камерних відеопідсилювачах на відиконі для зменшення шумів застосовують параметричні вхідні каскади, шуми яких надто малі. Досліджується регулярність та квазірегулярність спектральної матриці паралельно-послідовного модулятора, його передатні характеристики.

Summary. In television in camera amplifiers on camera tubes for noise reduction is used parametric input cascades, own noises of which substantially less. The regular and kvasi-regular of station regime is spectrum matrix parallel-series parametric modulator, its transfer characteristics.

В настоящее время все еще актуальна проблема уменьшения шумов камерных видеоусилителей. В работах [1,2,3,4] исследован стационарный режим параметрического модулятора камерного видеоусилителя, в котором использовался один параметрический диод (варикап). Промышленно реализованная схема параметрического видеоусилителя (ПВУ), экспериментально подтвердившая улучшение его шумовых свойств, была выполнена по схеме «модулятор – амплитудный детектор» (М-АД). В этом ПВУ использовался параллельно-последовательный модулятор на двух варикапах и один СВЧ-контур.

Однако в литературе отсутствует исследование регулярности спектральной матрицы этого модулятора.

Цель статьи – исследовать регулярность и квазирегулярность спектральной матрицы стационарного режима параллельно-последовательного параметрического модулятора и рассчитать его передаточные характеристики.

Принципиальная схема модуляторной части ПВУ представлена на рис. 1.

Описание схемы рис. 1 VD₁ и VD₂ – параметрические диоды; полагаем их параметры и характеристики идентичными. Источник видеосигнала с частотой Ω модулируется источником тока i_0 , его выходной проводимостью G_1 и выходной емкостью C_1 . Индуктивность L_1 служит элементом развязки между видео- и СВЧ частями схемы. Она осуществляет также коррекцию амплитудночастотной характеристики модулятора в области верхних видеочастот. От генератора накачки Γ на параллельный СВЧ-контур подается напряжение накачки $u_{\rm H}$ с частотой v. Параллельный СВЧ-контур

образован элементами L_2 , G_2 , $(C_2 + \frac{1}{2}C_{_{\mathcal{I}}})$, где $C_{_{\mathcal{I}}}$ – емкость параметрических диодов VD_1 и VD_2 в

рабочей точке.

Для создания смещения на диодах VD_1 и VD_2 служит источник постоянного напряжения E_{cm} , блокированный емкостью $C_{6\pi}$. Емкость C_2 образована монтажными и паразитными емкостями. СВЧ-контур настроен на частоту, близкую к частоте накачки v.

1. Стационарный режим модулятора. Анализ стационарного режима модулятора (рис. 1) выполним в предположении, что входной сигнал по сравнению с напряжением накачки мал [5,6]. В этом случае схему модулятора можно представить в виде двух моделей: нелинейной для генератора накачки (рис. 2,а) и линейно-параметрической для видеосигнала (рис. 3).

Рисунок 2 – Нелинейная модель модулятора: а) модель модулятора для генератора накачки;

б) законы вариации параметрических элементов: емкости $c_1(t)$ и эластанса $s_2(t) = \frac{1}{c_2(t)}$

Рисунок 3 – Малосигнальная линейно-параметрическая модель модулятора

Для удобства составления спектральной матрицы модулятора схему рис. 3 представим в виде обобщенной модели (рис. 4).

Рисунок 4 – Обобщенная модель модулятора

На рис. 4 обозначены параметры модели на комбинационной частоте $\omega_k = \Omega \pm kv$:

$$Y'_{k} = G_{1} + j\omega_{k}C_{1}; \quad Y''_{k} = G_{2} + j\omega_{k}C_{2} + (j\omega_{k}L_{2})^{-1}; \quad Z_{k} = j\omega_{k}L_{1},$$
(1)

где v – частота накачки; Ω – частота видеосигнала, причем v >> Ω .

Первый параметрический элемент удобно характеризовать емкостным параметром $c_1(t)$, а второй – обратным параметром $s_2(t) = \frac{1}{c_2(t)}$:

$$c_{1}(t) = C_{0} + \sum_{m=1}^{\infty} 2C_{m} \cos(m\nu t) = C_{0} \left[1 + \sum_{m=1}^{\infty} 2\Gamma_{m}^{(c)} \cos(m\nu t) \right],$$
(2)

$$s_{2}(t) = S_{0} + \sum_{m=1}^{\infty} 2S_{m} \cos(mvt) = S_{0} \left[1 + \sum_{m=1}^{\infty} 2\Gamma_{m}^{(s)} \cos(mvt) \right].$$
(3)

Модель рис. 5 представим в виде пяти элементарных четырехполюсников, которые описываются матрицами [*a*₁], ... [*a*₅].

Общую спектральную матрицу [a] модулятора найдем путем перемножения матриц [a₁], ..., [a₅]

$$[a] = [a_1] [a_2] [a_3] [a_4] [a_5].$$
(4)

Система уравнений, описывающая обобщенную модель модулятора рис. 4 и матрицы этой системы, приведены на рис. 5

66 Варава Ю.В., Арбузников В.А. Параметрический модулятор телевизионого малошумящего камерного видеоусилителя

Рисунок 5 – Матрицы модели рис. 4

В [а] входят бесконечные диагонали матрицы [1], [0], [Y'], [Y'], [Z], [$i\omega$] и [$i\omega$]⁻¹ и бесконечная квадратная матрица преобразования [γ] [2].

Для определения передаточного сопротивления модулятора на к-й комбинационной частоте достаточно записать матрицу $[a_{21}]$, которая связывает матрицу входного тока с выходным напряжением. $\langle \mathbf{n} \rangle$

$$Z_{\rm m} = Z_k = \frac{\dot{U}_k^{(2)}}{\dot{I}_0^{(1)}} \quad ; \tag{5}$$

$$[\dot{I}^{(1)}] = [a_{21}][\dot{U}^{(2)}], \tag{6}$$

 $[\dot{I}^{(1)}] = [a_{21}][U^{(2)}],$ $[a_{21}] = [Y'] + [Y'][Z][Y''] + [Y'][Z]C_{0\sim}[j\omega][\gamma] + C_{0\sim}[j\omega][\gamma] +$ где

$$+ [Y']S_{0\sim}[\gamma][j\omega]^{-1}[Y''] + C_{0\sim}[j\omega][\gamma]S_{0\sim}[\gamma][j\omega]^{-1}[Y''] + [Y'][Z]C_{0\sim}[j\omega][\gamma]S_{0\sim}[\gamma][j\omega]^{-1}[Y''].$$
(7)

Матрица $[\dot{I}^{(1)}]$ содержит только один член на частоте видеосигнала $\dot{I}^{(1)}_0$, матрица выходного напряжения $[\dot{U}^{(2)}]$ содержит бесконечное число напряжений всех комбинационных частот: $k = 0; \pm 1; \pm 2; ... \pm \infty$.

После перемножения матриц, входящих в выражение (7), получим элементы матрицы [a₂₁]:

$$a_{k,k} = Y'_{k} + Y'_{k}Y''_{k}S_{0}\left[j\omega_{k}\right]^{-1} + \left(1 + Y'_{k}Z_{k}\right)\left(Y''_{k} + j\omega_{k}C_{0} + Y''_{k}\sum_{m=-\infty}^{\infty}C_{m}S_{m}\right), \quad (8)$$

$$a_{k,k+i} = Y_k' Y_{k+i}'' S_{i\sim} [j\omega_{k+i}]^{-1} + (1 + Y_k' Z_k) \left(j\omega_k C_{i\sim} + Y_{k+i}'' \omega_k [\omega_{k+i}]^{-1} \sum_{m=-\infty}^{\infty} C_{m\sim} S_{(m+i)\sim} \right), \quad (9)$$

$$(k = 0; \pm 1; \pm 2; ... \pm \infty);$$
 $(i = \pm 1, \pm 2, ... \pm \infty).$

2. Исследование регулярности. Преобразуем бесконечную систему уравнений (6), введя новые неизвестные переменные $x_k = Y''_{k+i} \cdot U_k^{(2)}$ и свободные члены $b_k = (Y'_k Z_k)^{-1} \cdot \dot{I}_k^{(1)}$.

Получим новую бесконечную систему уравнений (СЛАУ):

$$[b] = [d][x], (10)$$

Рисунок 6 – Преобразованная бесконечная система уравнений,

где

$$d_{k,k} = \left[1 + (Y_k'Z_k)^{-1}\right] \left[1 + j\omega_k C_{0} [Y_k'']^{-1} + \sum_{m=-\infty}^{\infty} C_{m} S_{m} + [Y''Z_k]^{-1} + S_{0} [j\omega_k]^{-1} (Z_k)^{-1}\right]^{-1}; (11)$$

$$d_{k,k+i} = \left[1 + (Y'_{k}Z_{k})^{-1}\right] \left[\left(j\omega_{k}C_{i\sim} \left[Y'_{k+i}\right]^{-1} + \omega_{k} \left[\omega_{k+i}\right]^{-1} \sum_{m=-\infty}^{\infty} C_{m\sim}S_{(m+i)\sim} \right] + S_{i\sim} \left[j\omega_{k+i}\right]^{-1} (Z_{k})^{-1} \right], (12)$$

(k = 0; ±1; ±2; ... ±∞); (i = ±1, ±2, ... ±∞).

Если для коэффициентов разложения $c_1(t)$ и $s_2(t)$ в ряде Фурье выполняются условия абсолютной сходимости рядов,

$$\sum_{m=1}^{\infty} |2C_{m}| < +\infty, \quad \sum_{m=1}^{\infty} |2S_{m}| < +\infty,$$
(13)

то выполняются также условия

$$\sum_{m=1}^{\infty} \left| C_{m \sim} S_{(m+i)} \right| < +\infty, \quad \sum_{i=1}^{\infty} \left| d_{k,k+i} \right| < +\infty.$$
(14)

Следовательно, выполнено одно из условий квазирегулярности.

Рассмотрим элементы матрицы [d] при $k \to \infty$. Полные проводимости Y'_k и Y''_k при этом будут стремиться соответственно к значениям

$$Y'_{k} = j(\Omega + k\nu)C_1, \qquad Y''_{k} = j(\Omega + k\nu)C_2.$$

$$(15)$$

Элементы матрицы при $k \to \infty$ будут иметь следующий вид:

$$d_{k,k} = 1 + C_{0\sim} (C_2)^{-1} + \sum_{m=-\infty}^{\infty} C_{m\sim} S_{m\sim};$$

$$d_{k,k+i} = C_{i\sim} (C_2)^{-1} + \sum_{m=-\infty}^{\infty} C_{m\sim} S_{(m+i)\sim}.$$
(16)

Пусть $b_0 \neq 0$ и $b_k = 0$ при $k \neq 0$, тогда бесконечная СЛАУ (10) будет квазирегулярной при выполнении условия

$$\sum_{k=0, i=-\infty}^{\infty} \left| d_{k,k+i} \right| / \left| d_{k,k} \right| < 1 \qquad \text{при } k > N ,$$
(17)

где N – номер строки, начиная с которой выполняются условия регуляторности системы.

Параметрический модулятор телевизионого малошумящего камерного видеоусилителя

68

При k >> 1 соотношения (16) уже справедливы и условия квазирегулярности (17) можно записать

$$\sum_{i\neq 0, i=-\infty}^{\infty} \left| C_{i\sim} (C_2)^{-1} + \sum_{m=-\infty}^{\infty} C_{m\sim} S_{(m+i)} \right| / \left| 1 + C_{0\sim} (C_2)^{-1} + \sum_{m=-\infty}^{\infty} C_{m\sim} S_{m\sim} \right| < 1.$$
(18)

Неравенство (18) является необходимым и достаточным условием квазирегулярности системы уравнений (16). Однако, для номера N, начиная с которого выполняется условие квазирегулярности, не обязательно выполнение условия N >> 1. Это условие является достаточным, но не необходимым. Обычно условие (17) выполняется при менее жестком допущении.

Тест-модели для параллельно-последовательного емкостного модулятора. Тщательные измерения параметров макета ПВУ позволили сформировать набор данных для важных тест-моделей 1 и 2, для которых значения параметров представлены в табл. 1, 2.

В первой модели приведены данные для модулятора при накачке гармоническим напряжением, во второй – при накачке гармоническим током.

3. Модулятор с накачкой sin-напряжением, тест-модель 1: емкость p-n- перехода варьируется синусоидальным напряжением накачки. Коэффициенты разложения $c_1(t)$ взяты из работ [5, 6, 7] при относительной амплитуде накачки K = 0.95; коэффициенты разложения $s_2(t)$ получены из них, полагая, что характеристики варикапов идентичны. Значения параметров приведены в табл.1.

Таблица 1 – Параметры элементов модулятора: тест-модель 1

$C_{0\sim} = 2,05 \cdot 10^{-12} \Phi \begin{pmatrix} \Gamma_2^{(C)} = 0,130, \\ \Gamma_3^{(C)} = 0,075, \\ \Gamma_4^{(C)} = 0,04575, \\ \Gamma_5^{(C)} = \dots = 0 \end{pmatrix} S_{0\sim} = 0,0565 \cdot 10^{12} \Phi^{-1}$	$\Gamma_{1}^{(S)} = 0,220,$ $\Gamma_{2}^{(S)} = 0,0452,$ $\Gamma_{3}^{(S)} = 0,0204,$ $\Gamma_{4}^{(S)} = 0,0241,$ $\Gamma_{5}^{(S)} = \Gamma_{6}^{(S)} =$	$v = 2\pi \cdot 3, 33 \cdot 10^8 \text{ c}^{-1},$ $L1 = 2,09 \cdot 10^9 \text{ c}^{-1},$ $C_1 = 20 \cdot 10^{-12} \Phi,$ $C_2 = 2,6 \cdot 10^{-12} \Phi,$ $G_1 = 10^{-5} \text{ CM},$ $G_1 = 0.8 \cdot 10^{-4} \text{ CM},$
---	--	--

Полоса пропускания всего ПВУ требовалась не менее 6,5 МГц. Для исследования выбирались разные значения индуктивностей.

Для значения индуктивности резонансного контура *L*₂ выбраны два варианта:

1. $L_2 = 6,3 \cdot 10^{-8}$ Гн (настройка контура на частоту накачки $\omega_0 = v$);

2. $L_2 = 6,11 \cdot 10^{-8}$ Гн (расстройка контура $f_p = 5$ МГц; $\omega_0 = \nu + 2\pi f_p$).

Для значения индуктивности видеокоррекции *L*₁ выбраны три варианта:

а) $L_1 = 1,86 \cdot 10^{-5}$ Гн; при этом частота коррекции $F_k = 20$ МГц; 6) $L_1 = 7,45 \cdot 10^{-5}$ Гн; при этом частота коррекции $F_k = 10$ МГц;

в) $L_1 = 29,8 \cdot 10^{-5}$ Гн; при этом частота коррекции $F_k = 5$ МГц.

В вариантах "a" и "б" L₁ выполняет развязывающую роль, в варианте "в" – еще и корректирующую.

Решение бесконечной системы уравнений (6) на ЭВМ выполнялось методом редукции при последовательном усечении, где порядок усеченной системы равен (2N+1).

Зависимости погрешности расчета $\varepsilon = \phi(N)$ для варианта 1,*a* и для вариантов 2,*a*, 2,*б* и 2,*в* представлены на рис. 7 и рис. 8.

На рис. 9 представлены АЧХ сопротивления передачи тест-модели 1:

Z₋₁ (сплошные линии) и *Z*₊₁ (пунктирные линии) для трех вариантов наборов индуктивностей: 2 а, 2 б и 2 в.

Изучение АЧХ показывает, что расстройка резонансного контура уменьшает сопротивление передачи. Включение L₁ корректирует АЧХ в области верхних частот.

Варава Ю.В., Арбузников В.А.

Рисунок 7 – Погрешность при расчете АЧХ тест-модели 1 (вариант 1,*a*)

Рисунок 8 – Погрешность при расчете АЧХ тест модели 1 (варианты 2, *a*, 2, *б* и 2, *в*)

Для сравнения вариантов 1,*a* и 2,*a* на рис. 10 приведены спектры сопротивления передачи, полученные на частоте видеосигнала F = 1кГц при различном усечении бесконечной системы управлений (6). Из спектрограмм видно, что для варианта 2,*a* уже при N = 1 получены значения основных комбинационных составляющих $|Z_{\pm 1}|$ (с погрешностью 0,1); дальнейшее увеличение N лишь уточняет компоненты. Также важно и то, что составляющие $|Z_{\pm 2}|$ существенно меньше, чем в варианте 1,*a*. Изучение спектрограмм для варианта 1*a* указывает, что схема близка к неустойчивости.

Рисунок 9 – Амплитудно-частотная характеристика сопротивления передачи тестмодели 1

70

24	800 2,0	800 1.0	N= 1	
10"	11			
100				
		i n	$\mathcal{N} \in \mathcal{Q}$	Ca)
10 *	П	1 11 11		
100	U			1
10 "	11	11	$N^{\prime} \in \mathcal{J}$	6.
	1			
10 *	11		$\mathcal{N} = \mathcal{A}$	2
10	II II II	Пппп		
10"			N+5	60
10 "	11 11 11	ПипиИ		
10.0				120
10 4	11 11	H H H H H H	~ - 0	
100			_	-
10.0	11		N = 2	0
100				
10-	11		N + 8	63
		ПлиПлин		
100			N + 9	6.
-	11 11 11 11	II 11 II.II.	11	
0.8			N=10	1
10 "	11 11 10 10 10			
-				

Рисунок 10 – Спектрограммы модели 1 на 1 кГц при разных усечениях бесконечных СЛАУ

4. Модулятор с накачкой *sin*-током, тест-модель **2**: емкость *p*-*n*- перехода варьируется синусоидальным током накачки. Коэффициенты разложения $c_1(t)$ и s(t) в ряд Фурье получены из следующих аппроксимирующих функций:

$$c_1(t) = C_{\rm cM} \left(1 - K \cos \nu t \right)^{-0.5}, \quad s_2(t) = C_{\rm cM}^{-1} \left(1 + K \cos \nu t \right)^{0.5}, \tag{19}$$

Варава Ю.В., Арбузников В.А.

Параметрический модулятор телевизионого малошумящего камерного видеоусилителя

где $C_{\rm cm}$ – емкость в точке смещения; K – относительная амплитуда накачки.

Разложение в ряд Фурье проведем, отбросив составляющие, отличающиеся от первой гармоники более чем в 25 раз.

Коэффициенты разложения и другие параметры представлены в табл. 2. При такой аппроксимации матрица [a] имеет ограниченное число диагоналей l = 5, а условие регулярности выполняется уже при N = 6 = l + 1.

таолица 2	indputterpbi Siemeniter	, mogymniopu. reer mog		
$C_{0\sim} = 2,28 \cdot 10^{-12} \Phi$	$\Gamma_{1}^{(C)} = 0,266,$ $\Gamma_{2}^{(C)} = 0,1035,$ $\Gamma_{3}^{(C)} = 0,0446,$ $\Gamma_{4}^{(C)} = 0,0201,$ $\Gamma_{5}^{(C)} = 0,0093,$ $\Gamma_{6}^{(C)} = 0,00438$	$S_{0\sim} = 0,505 \cdot 10^{12} \Phi^{-1}$	$\begin{split} & \Gamma_1^{(S)} = 0,232 \ , \\ & \Gamma_2^{(S)} = 0,0287 \ , \\ & \Gamma_3^{(S)} = 0,0072 \ , \\ & \Gamma_4^{(S)} = 0,00229 \ , \\ & \Gamma_5^{(S)} = \ldots = 0 \end{split}$	$v = 2\pi \cdot 4 \cdot 10^8 \text{ c}^{-1},$ $L1 = 2 \cdot 10^{-6} \Gamma_{\text{H}},$ $C_1 = 48 \cdot 10^{-12} \Phi,$ $C_2 = 10^{-12} \Phi,$ $G_1 = 10^{-5} \text{ CM},$ $G_2 = 1,49 \cdot 10^{-4} \text{ CM}$

Таблица 2 – Параметры элем	иентов модулятора: тест-модель 2
----------------------------	----------------------------------

Решение системы уравнений (6) выполнено методом редукции. Расчеты выполнены при 3-х значениях индуктивности L_2 для получения характерных значений обобщенной расстройки СВЧ-контура $\beta = (\omega_2 \cdot v)/\alpha_2$:

1) $L_2 = 7,3 \cdot 10^{-8} \, \Gamma_{\rm H} \, (\beta = 0,5);$

2) $L_2 = 7,2 \cdot 10^{-8} \Gamma H (\beta = 0,9);$

3) $L_2 = 7,1 \cdot 10^{-8} \Gamma_{\rm H} \ (\beta = 1,5).$

На рис. 11 представлены АЧХ сопротивления передачи тест-модели 2: Z₋₁ (сплошные линии) и Z₊₁ (пунктирные линии) для трех вариантов обобщенной расстройки β.

Из рассмотрения АЧХ видно, что при уменьшении β растет сопротивление передачи схемы; при этом полоса пропускания модулятора на уровне 0,707 остается неизменной.

Таким образом, в данной работе проведено исследование стационарного режима параллельнопоследовательного модулятора ПВУ, получена его спектральная матрица, выполнено исследование регулярности и квазирегулярности, получены условия квазирегулярности этой матрицы.

Рисунок 11 – Амплитудно-частотная характеристика сопротивления передачи тест-модели 1

Выполнены исследования передаточных характеристик тест-моделей модулятора, сделан анализ погрешности результатов расчетов, что позволяет при заданной погрешности существенно уменьшить время анализа схемы.

Выполненные расчеты позволяют определить усиление и полосу пропускания ПВУ.

Литература

- 1. Варава Ю.В. Телевизионные малошумящие камерные видеоусилители с параметрическим входом / Ю.В. Варава, В.А. Арбузников // Наукові праці ОНАЗ ім. О.С. Попова. 2010. № 1. С. 68-77.
- 2. Варава Ю.В. Регулярность и квазирегулярность стационарного режима параметрического модулятора для телевизионного малошумящего камерного видеоусилителя / Ю.В. Варава, В.А. Арбузников // Наукові праці ОНАЗ ім. О.С. Попова. 2011. № 1. С. 54-63.
- 3. Варава Ю.В. Точный стационарный режим параметрического модулятора телевизионного малошумящего камерного видеоусилителя / Ю.В. Варава, В.А. Арбузников . Е. М. Рудый // Наукові праці ОНАЗ ім. О.С. Попова. 2011. № 2. С. 49-62.
- 4. Одинцов Б.В Системы космической связи: учеб. пособ. / Б.В. Одинцов, Э.А. Сукачев, А.К. Гуцалюк // Одесск. электротехн. ин-т связи им. А.С. Попова. Одесса, 1989. 76 с.
- 5. Айнбиндер И.М. Об основах линейной теории параметрических усилителей / И.М. Айнбиндер // Радиотехника. 1963. Т. 18. № 5. С. 5-21.
- 6. *Айнбиндер И.М.* Об основах единой теории двухполюсных преобразователей частоты / И.М. Айнбиндер // Радиотехника. 1964. Т.19. № 3. С. 48-62.
- 7. *Айнбиндер И.М.* Коэффициенты Фурье периодически изменяющейся емкости параметрических диодов / И.М. Айнбиндер // Вопросы радиоэлектроники. Сер. Х. 1965. Вып.1.

Варава Ю.В., Арбузников В.А.

Параметрический модулятор телевизионого малошумящего камерного видеоусилителя