Сухарьков О.В. Сухарьков О.В. Suharkov O.V.

БЛИЖНЕЕ АКУСТИЧЕСКОЕ ПОЛЕ МОДИФИЦИРОВАННОГО ЖИДКОСТРУЙНОГО ПРЕОБРАЗОВАТЕЛЯ

БЛИЗЬКЕ АКУСТИЧНЕ ПОЛЕ МОДИФІКОВАНОГО РІДКОСТРУМІННОГО ПЕРЕТВОРЮВАЧА

NEAR ACOUSTIC FIELD OF MODIFIED HYDRODYNAMIC CONVERTER

Аннотация. Представлены результаты экспериментального исследования ближнего акустического поля жидкоструйного преобразователя со ступенчатым препятствием и круговым щелевым соплом в виде соосных дисков.

Анотація. Представлені результати експериментального дослідження ближнього акустичного поля рідкострумінного перетворювача зі східчастою перешкодою й коловим щілинним соплом у вигляді співвісних дисків.

Summary. The experimental research of near acoustic field of hydrodynamic converter with the step obstacle and circular gap nozzle as disks are presented.

В подводной связи проблеме увеличения дальности действия излучающих гидроакустических антенн уделяют особое внимание [1, 2]. Для решения этой проблемы перспективно использовать рупорные антенны, в которых в качестве основных элементов служат низкочастотные (0,2...5 кГц) жидкоструйные преобразователи со ступенчатым препятствием [3, 4]. Достоинствами таких преобразователей являются экономичность (дешевизна изготовления излучателей), простота в эксплуатации, малые габариты и масса, отсутствие вибрирующих элементов конструкции, что обуславливает длительный срок их службы. Известно, что размеры зоны звукообразования этих преобразователей во много раз меньше длины генерируемой упругой волны. Поэтому излучатели данного типа в неограниченной среде можно рассматривать как точечные источники сферически расходящихся волн. В работе [5] теоретически и экспериментально исследовано ближнее акустическое поле прямоточного жидкоструйного излучателя. Однако до сих пор не исследовалось звуковое поле в ближней зоне модифицированного жидкоструйного преобразователя [6] с круговым щелевым соплом в виде соосных дисков. Особенностью такого преобразователя является то, что в нем, выходящая из сопла затопленная осесимметричная плоская струя формируется под прямым углом к оси излучателя.

Цель данной статьи – экспериментально исследовать ближнее акустическое поле жидкоструйного преобразователя со ступенчатым препятствием и круговым щелевым соплом в виде соосных дисков.

Механизм звукообразования модифицированного преобразователя. Рассмотрим механизм генерации звука жидкоструйным преобразователем со ступенчатым препятствием и круговым щелевым соплом в виде соосных дисков (рис. 1). Затопленная струя, вытекающая из кругового щелевого сопла, образованного соосными дисками корпуса 1 и обтекателя 6, формируется в плоскую осесимметричную струю 5 в форме кольцевой пластинки. В корпусе 1 излучателя выполнена проточка, форма поперечного сечения которой близка к квадрату [6]. Ступенчатое препятствие 3 (прямоугольный клин) способствует тому, что часть кинетической энергии струи расходуется на формирование в проточке корпуса 1 вихря 2, внутри которого за счет эффекта Бернулли возникает кавитация. Пульсации тороидального вихря 2 возбуждают изгибные колебания кольцевой струйной пластинки 5 на ее собственной частоте. Можно сказать, что в рабочей зоне излучателя образуется резонансная система, состоящая из упругой кавитирующей среды внутри проточки корпуса 1, струйной кольцевой пластинки 5 и присоединенной массы внешней среды. Эта резонансная система и обеспечивает обратную акустическую связь, навязывая осесимметричной плоской струе автоколебания со стабильной частотой [7, 8]. Оптимальный режим гидродинамического звукообразования, при котором генерируется тональный акустический сигнал максимального уровня, соответствует совпадению частоты пульсаций вихря 2 с частотой основной гармоники изгибных колебаний струйной пластинки 5. Причем вблизи зоны звукообразования акустический сигнал высокой интенсивности представляет собой волну конечной амплитуды [9].

Работа жидкоструйного излучателя сопровождается периодическим (с частотой основного тона звука) выбросом содержимого кавитационной области 2 во внешнюю среду. При этом создается вторичная тороидальная область 4, форма поперечного сечения которой близка к эллипсу. В области 4 происходит коллапс кавитационных пузырьков, в результате окружающей жидкой чего В среде генерируются микроударные волны, что приводит к усилению интенсивности генерируемого акустического сигнала. Максимальный радиус $r_{\rm max}$ зоны гидродинамического звукообразования (см. рис. 1) можно оценить по фотографиям

Рисунок 1 – Физическая модель модифицированного жидкоструйного преобразователя

излучателя на просвет при оптимальном режиме его работы [6].

2. Оборудование и методика проведения исследований. Экспериментальное исследование акустического поля модифицированного жидкоструйного преобразователя проводилось в акустическом бассейне 1 со звукопоглощающими стенками (рис. 2), размеры которого составляли 4 × 2,5 × 2,5 м. Оборудование лабораторного стенда включало в себя насосный агрегат 2 с плавно

регулируемым расходом жидкости и систему трубопроводов. Излучатель 6 и калиброванный гидрофон 7 устанавливались в координатном устройстве 5 и размещались внутри бассейна 1 в затопленном состоянии. Расход Q рабочей жидкости измерялся индукционным расходомером 3, а давление нагнетания жидкости в излучатель 6 контролировалось образцовым манометром 4. По показаниям расходомера 3 и площади сечения кольцевого сопла S_c вычислялась средняя по расходу скорость затопленной струи на выходе из сопла излучателя: $V = Q / S_c$.

Аппаратура регистрации и анализа акустических сигналов, поступающих от гидрофона 7, включала в себя вольтметр 8, осциллограф 9, анализатор частотного спектра 10 типа СЗЧ, комплект переключателей и

Рисунок 2 – Схема лабораторного стенда, использовавшегося в экспериментах

соединительных проводов. Для уточнения частоты основной гармоники генерируемого сигнала использовался электронносчетный частотомер 11, на вход которого поступал электрический сигнал с выхода любого третьоктавного фильтра спектроанализатора 10.

В ходе экспериментов модифицированный преобразователь погружался на глубину, которая соответствовала избыточному статическому давлению 5 кПа. Рабочей жидкостью служила водопроводная вода, которая для установления равновесия газосодержания отстаивалась в течение трех недель. Температура воды поддерживалась в пределах (19...21)°С, что обеспечивало неизменность плотности и вязкости жидкой среды. Для акустических измерений использовался пьезокерамический сферический гидрофон диаметром 6 мм. Координатное устройство 5 обеспечивало перемещение гидрофона с шагом 2 мм вдоль и поперек бассейна, вверх, вниз, а также вращение вокруг геометрической оси преобразователя. В каждой точке поля регистрировались уровень звукового давления сигнала, его осциллограмма, спектр и частота основной гармоники.

3. Анализ результатов экспериментальных исследований. В качестве основного типоразмера модифицированного жидкоструйного преобразователя можно принять отношение ширины кольцевой проточки S к радиусу сопла r_c (см. рис. 1). В процессе экспериментальных

исследований использовались пять излучателей различного типоразмера S / r_c , у которых радиус сопла принимал значения: $r_c = 8,0;10,0;13,0$ мм. При этом толщина затопленной струи оставалась неизменной и равной: h = 0,5 мм. Для изменения параметра S в интервале (3,5...8,0) мм, использовался набор корпусов излучателя с различными по ширине кольцевыми проточками. В табл. 1 представлены акустические параметры исследуемых излучателей. Размер зоны звукообразования излучателей оценивался по их фотографиям на просвет при оптимальном режиме генерирования акустического сигнала [6].

Основной типоразмер преобразователя, S / r_{c} [мм/мм]	3,5/8,0	4/10	5/13	6/13	8/13
Оптимальная скорость затопленной струи, $V_{\text{опт}}$ [м/с]	28	30,5	34,5	37,5	43
Площадь поверхности колеблющейся кольцевой струйной пластинки, F [мм ²]	214,3	301,4	486,7	603,0	854,0
Размер зоны звукообразования преобразователя, 2 <i>r</i> _{max} [м]	0,034	0,040	0,052	0,056	0,064
Длина волны основной гармоники звука, λ_0 [м]	1,52	1,92	3,26	4,05	6,82
$2r_{\rm max}$ / λ_0 [M/M]	0,022	0,021	0,016	0,014	0,009

Таблица 1 – Акустические параметры модифицированного преобразователя

Видно, что у модифицированного преобразователя (см. табл. 1), подобно ранее исследованному прямоточному жидкоструйному излучателю [5], отношение размера его зоны звукообразования к длине волны основной гармоники сигнала дает величину значительно меньшую единицы ($2r_{max} / \lambda_0 = 0,009...0,022$). Известно [10], что для источников звука малых размеров монопольное излучение играет доминирующую роль в тех случаях, когда звук генерируется посредством периодического изменения объема. В работе [7] для гидродинамических излучателей прямоточного и противоточного типов предложена и экспериментально подтверждена простейшая акустическая модель пульсирующей сферической струйной оболочки с двухфазной средой во внутренней области. Модифицированный гидродинамический излучатель [6], с достаточной степенью точности, можно также аппроксимировать источником звука нулевого порядка (монополем), создающим сферические расходящиеся волны в неограниченной жидкой среде [10]. В этом случае уровень звукового давления сигнала зависит только от расстояния до источника звука и не зависит от углов θ и ϕ . Результаты экспериментальной проверки этой гипотезы в сравнении с идеальной сферической волной показаны на рис. 3.

Рисунок 3 – Теоретические (——) и экспериментальные (– – –) диаграммы направленности жидкоструйного преобразователя с круговым щелевым соплом в виде соосных дисков: *а*) в горизонтальной плоскости; *б*) в вертикальной плоскости

Представленные здесь в двух ортогональных плоскостях диаграммы направленности зарегистрированы на расстоянии 50 мм от зоны звукообразования модифицированного преобразователя ($s/r_c = 3, 5/8, 0$). Из диаграмм направленности видно, что разработанный жидкоструйный излучатель является источником сферически расходящихся волн. При этом, следует отметить незначительное отклонение экспериментальной диаграммы направленности от теоретической диаграммы (8...10%) в вертикальной плоскости. Увеличение величины звукового давления в направлении $\theta = 90^{\circ}$ связано с расположением гидрофона в области турбулентного потока, создаваемого отходящей от излучателя осесимметричной затопленной струей. В этом случае обтекаемый потоком гидрофон, наряду с пульсациями давления акустического типа, регистрирует также пульсации давления гидродинамического типа (псевдозвук) [11]. Уменьшение же уровня звукового сигнала в направлении $\theta = 0^{\circ}$ можно объяснить тем, что при моделировании не учитывалось частичное экранирование звука корпусом преобразователя. Аналогичные по характеру результаты были получены при экспериментальном исследовании ближнего звукового поля прямоточного жидкоструйного излучателя [5].

Проведенные ранее экспериментальные исследования показали, что жидкоструйные излучатели с пульсирующей вихревой кавитационной областью генерируют негармонические акустические сигналы в виде коротких экспоненциальных импульсов [5, 12]. В спектре звука, кроме основной гармоники, присутствуют также высшие гармонические составляющие. На рис. 4. приведены фонограмма и спектрограмма типичных акустических сигналов, излучаемых модифицированным преобразователем при оптимальном режиме истечения струи.

Рисунок 4 – Типичная фонограмма (*a*) и соответствующая ей спектрограмма (б) акустического сигнала жидкоструйного преобразователя

Анализ фонограмм (рис. 4, *a*) показал, что одиночный импульс, излучаемый модифицированным излучателем, также как и для исследуемых ранее прямоточных и противоточных излучателей [5, 12], можно описать суммой двух экспонент:

$$p(t) = \frac{p_0}{r} \exp\left[-\beta_1 \left(t - \frac{r}{c}\right)\right] - \frac{p_0}{r} \exp\left[-\beta_2 \left(t - \frac{r}{c}\right)\right],\tag{1}$$

где p_0 – амплитуда импульса вблизи активной зоны звукообразования; t – время; r – расстояние от границы звукообразования до точки поля; c – скорость звука; β_1 , β_2 –коэффициенты, соответствующие длительности переднего и заднего фронтов импульса соответственно. В выражении (1) учтено, что реальные жидкоструйные излучатели представляют собой источники сферически расходящихся волн.

Период следования импульсов $(T \sim 1/f_0)$ определяется частотой основного тона генерируемого звука. В статье [8], в результате решения задачи собственных колебаний кольцевой пластинки, получена аналитическая зависимость частоты f_0 акустического сигнала от

Ближнее акустическое поле модифицированного жидкоструйного преобразователя

геометрических параметров плоской струи и свойств рабочей жидкости. Если принять, что длительность экспоненциального импульса τ приблизительно равна периоду сигнала по основной гармонике, то согласно [8], ее можно рассчитать по формуле

$$\tau = \frac{0,295s^2}{h} \sqrt{\frac{12\rho}{E\left(1 - \frac{r_c}{R}\right)}},$$
(2)

Рисунок 5 – Зависимость длительности экспоненциального импульса от отношения площади струйной кольцевой пластинки к радиусу сопла излучателя: 1 – экспериментальная кривая; 2 – теоретическая кривая, рассчитанная по формуле (2)

где h, s, $r_{\rm c}$, $R = r_{\rm c} + s$ – толщина, ширина, внутренний и внешний радиусы кольцевой струйной пластинки соответственно (см. рис.1); р – плотность жидкости; Е – модуль упругости затопленной струи. На рис. 5 представлена зависимость длительности экспоненциального импульса от отношения площади F поверхности колеблюшейся кольневой струйной пластинки к радиусу сопла излучателя.

Здесь наблюдается хорошее количественное соответствие между теоретическими и экспериментальными данными. Из сравнения значений F (см. табл. 1) и длительности импульса τ (см. рис. 5) видно, что увеличение площади колеблющейся струйной пластинки в четыре раза

приводит примерно к такому же возрастанию длительности экспоненциального импульса.

Анализ фонограмм (см. рис. 4, *a*), генерируемых акустических сигналов, показывает, что в течение приблизительно 3/4 периода происходит накопление энергии, а за время примерно T/4излучается упругая волна. Исходя из этой особенности, можно подобрать соответствующие

Рисунок 6 – Зависимость коэффициента крутизны фронта экспоненциального импульса от отношения площади струйной кольцевой пластинки к радиусу сопла излучателя: 1 – для переднего фронта; 2 – для заднего фронта

коэффициенты β_1 , β_2 . На рис. 6 отражены зависимости $\beta_1(F/r_c)$ коэффициентов И $\beta_2(F/r_c)$, которые получены по измеренным значениям периода Т.

На рис. 7 представлены нормированные зависимости уровня сигнала звукового давления $P / P_0(r / \lambda)$ от безразмерного расстояния до границы звукообразования, выраженного в длинах излучаемых волн λ . Экспериментальные точки (рис. 7) соответствуют уровню генерируемого сигнала трех излучателей различного типоразмера s / r_{c} . Линии – регрессия результатов экспериментальных исследований акустических полей. Все зависимости нормированы относительно уровня акустического сигнала, измеренного на расстоянии $r/\lambda = 0.001$

от границы зоны звукообразования, для излучателя с типоразмером $s / r_c = 5 / 13$.

Анализ зависимости $P / P_0(r / \lambda)$ позволяет сделать вывод, что вблизи зоны звукообразования наблюдается нелинейное затухание экспоненциальных импульсов конечной амплитуды [5, 12]. При расширении фронта волны уровень звукового давления сигнала уменьшается и, начиная с расстояния

Рисунок 7 – Зависимость уровня генерируемого сигнала от безразмерного расстояния

до границы звукообразования преобразователя:

$$1 - s / r_c = 5 / 13 \rightarrow f_0 = 4601 \,\mathrm{II};$$

 $2 - s / r_c = 4 / 10 \rightarrow f_0 = 781\Gamma\mathrm{II};$
 $3 - s / r_c = 3,5 / 8 \rightarrow f_0 = 987\Gamma\mathrm{II}$

 $r/\lambda = 0,005$ наблюдается линейное затухание вида $P \sim \exp(-\alpha r)/r^2$ (где α – коэффициент поглощения звука).

В заключение проведено отметим: экспериментальное исследование ближнего акустического поля модифицированного жидкоструйного преобразователя. Доказано, что жидкоструйные излучатели со ступенчатым препятствием и круговым щелевым соплом в виде соосных дисков являются источниками звука нулевого порядка, генерирующими сферически негармонические расходящиеся волны. Генерируемые звуковые сигналы представляют собой короткие импульсы экспоненциальной формы с различной крутизной переднего и заднего фронтов. Вблизи области звукообразования обнаружено нелинейное затухание акустических импульсов, однако, на расстояниях, превышающих пять тысячных длины волны, имеет место линейное затухание сферических волн.

Литература

- 1. *Митько В.Б.* Гидроакустические средства связи и наблюдения / Митько В.Б., Евтютов А.П., Гущин С.Е. Л.: Судостроение, 1982. 200 с.
- 2. Свердлин Г.М. Прикладная гидроакустика / Свердлин Г.М. Л.: Судостроение, 1990. 320 с.
- 3. Сухарьков О.В. Гидроакустическая излучающая рупорная антенна на основе жидкоструйного преобразователя / О.В. Сухарьков // Акустичний вісник. 2011. 14. № 1. С. 56 63.
- 4. Сухарьков О.В. Передача дискретной информации в гидроакустический канал связи с использованием жидкоструйных преобразователей / О.В. Сухарьков // Цифрові технології. 2011. № 9. С. 100 110.
- 5. Сухарьков О.В. Экспериментальное исследование акустического поля прямоточного гидродинамического излучателя / О.В. Сухарьков // Наукові праці ОНАЗ ім. О.С. Попова. 2007. № 1. С. 39 44.
- Сухарьков О.В. Жидкоструйный излучатель со ступенчатым препятствием и круговым щелевым соплом в виде соосных дисков / О.В. Сухарьков // Наукові праці ОНАЗ ім. О.С. Попова. – 2010. – № 1. – С. 102 – 108.
- 7. Вовк И.В. О возможном механизме автоколебаний в струйных гидродинамических излучателях с развитой кавитацией / И.В. Вовк, В.Т. Гринченко, Ю.М. Дудзинский // Акустичний вісник. 2008. 11. № 2. С. 16 23.
- 8. *Сухарьков О.В.* Модель жидкоструйного излучателя с круговым щелевым соплом в виде соосных дисков / О.В. Сухарьков // Наукові праці ОНАЗ ім. О.С. Попова. 2011. № 2. С. 107–113.
- Amabili M. Review of Studies on Geometrically Nonlinear Vibrations and Dynamics of Circular Cylindrical Shells and Panels, with and without fluid-structure interaction / M. Amabili, M. P. Païdoussis // Appl. Mech. Rev. – 2003. – 56. – N 4. – P. 349 – 381.
- 10. Скучик Е. Основы акустики / Скучик Е. М.: Мир, 1976. Т. 2. 542 с.
- 11. Колесников А.Е. Акустические измерения / Колесников А.Е.. Л.: Судостроение, 1983. 255 с.
- 12. *Дудзинский Ю.М.* Ближнее поле осесимметричного гидродинамического излучателя / Ю.М. Дудзинский // Акустичний вісник. 2004. 7. № 4. С. 48 51.