УДК 621.372; 621.371

ИССЛЕДОВАНИЯ ВИТОЙ ПАРЫ ПРИ ЭКСПОФУНКЦИОНАЛЬНЫХ ВОЗДЕЙСТВИЯХ

ДОСЛІДЖЕННЯ ВИТОЇ ПАРИ ПРИ ЕКСПОФУНКЦІОНАЛЬНИХ ДІЯХ

RESERCH OF THE TWISTED PAIR UNDER EXPOFUNCTIONAL EXCITATION

Аннотация. Дана математическая модель витой пары категории 5E класс D при экспофункциональном воздействии. Доказана способность экспофункционального сигнала компенсировать частотнозависимые потери в кабельной линии связи.

Анотація. Дано математичну модель витої пари категорії 5E класу D при експофункціональних діях. Доведено здатність експофункціонального сигналу компенсувати частотнозалежні втрати в кабельній лінії зв'язку.

Summary. The mathematical model of the twisted pair of category 5E class D under expofunctional excitation is given. Ability of expofunctional signals to compensate frequency-dependent losses in a cable link is proved.

В современном мире телекоммуникаций явно прослеживается конкуренция беспроводных и проводных (кабельных) интерфейсов. Снижение цены электронных устройств привело к тому, что беспроводные интерфейсы стали дешевле кабельных. Однако они уступают кабельным по пропускной способности в несколько раз. Есть все основания считать, что такое отставание сохранится и в ближайшем обозримом будущем. Кроме того, беспроводные интерфейсы слабо защищены от несанкционированного доступа [1].

Инсталлированные на сегодняшний день структурированные кабельные системы (СКС) [2], которые являются элементом информационного пространства и неотъемлемой частью любого современного общественного здания, затрагивают проблему, связанную с тем, что указанные СКС не имеют резерва с точки зрения повышения скоростей передачи информации. Согласно требованиям (стандартам), описанным в литературе [2, 3], отрезок витой пары категории 5E класса D, соединяющий коммутационное оборудование с рабочей станцией, не может превышать длину 100 м при условии, что рабочая частота ограничена сверху на уровне 100 МГц, так как превышение указанных величин приводит к критическому значению затухания сигнала в указанном кабеле. Основной причиной ограничения скорости передачи информации по офисным кабельным сетям являются потери, возрастающие в проводниках с повышением частоты передаваемого сигнала. Компенсация указанных потерь позволит расширить возможности существующих СКС.

В основе одного из способов решения задачи компенсации потерь в линии лежит открытое в 1994 г. явление выделения активной мощности реактивными элементами электрической цепи при экспофункциональном воздействии [4]. В работе [5] на примере полосковой линии доказано способность экспофункциональных сигналов компенсировать частотнозависимые потери. При этом необходимо отметить, что исследование однородных цепей с распределенными параметрами при экспофункциональных воздействиях проводились намного шире. Так, указанным в работе [5] исследованиям, предшествовала работа [6], где исследованы амплитудно-частотные и переходные характеристики систем, содержащих электрические цепи с распределенными параметрами, которые эквивалентны коротким однородным линиям без искажений при экспогармоническом воздействии; исследованы отклики таких систем на последовательность прямоугольных импульсов. В работе [7] рассмотрены телеграфные уравнения однородных линий при экспофункциональных сигналах и исследованы амплитудно-частотные характеристики длинных однородных линий без искажений. В работе [8] дано понятие экспо-П-образного сигнала и рассмотрены особенности прохождения таких сигналов через длинную однородную линию без искажений. В работе [9] представлены исследования однородной линии с произвольными потерями при экспофункциональном воздействии. Однако исследования кабельных линий с частотнозависимыми потерями при экспофункциональных воздействиях не проводились, поэтому целью данной статьи является исследование возможности компенсации частотнозависимых потерь на примере витой пары категории 5Е класс D.

1. Математическая модель витой пары при экспофункциональном воздействии. Математическую модель витой пары при экспофункциональном воздействии можно получить, опираясь на модели линии с частотнозависимыми потерями, которые даны в работе [5].

Коротко опишем основные принципы работы математических моделей линий, предложенных в работе [5].

Математическая модель линии при гармоническом воздействии подробно описана, например, в литературе [10, 11], где отрезок однородной линии рассматривается как симметричный четырехполюсник, нагруженный на сопротивление Z_{μ} , (рис. 1).

Рисунок 1 – Симметричный четырехполюсник, нагруженный на Z_{μ}

Рассматривая линию как симметричный четырехполюсник, авторы работ [10, 11] определяют частотные функции, которые характеризируют данный четырехполюсник, нагруженный на $Z_{\rm H}$. В качестве таких функций рассматриваются амплитудно-частотная характеристика (АЧХ) и фазочастотная характеристика (ФЧХ). Для того чтобы получить АЧХ и ФЧХ четырехполюсника, нагруженного на сопротивление $Z_{\rm H}$, запишем его комплексную передаточную функцию по напряжению [10, 11]

$$\dot{K}_{U}(\omega) = \frac{\dot{U}_{2}}{\dot{U}_{1}} = K(\omega) \cdot e^{-j\varphi(\omega)} = \frac{Z_{H}}{A_{11}Z_{H} + A_{12}} = \frac{Z_{H}}{Z_{H}ch(\gamma l) + Z_{B}sh(\gamma l)},$$
(1)

где $K(\omega) - A4X; \phi(\omega) - \Phi4X; \omega = 2\pi f$ – угловая частота; \dot{U}_1 и \dot{U}_2 – напряжение в комплексном виде на входе и выходе четырехполюсника соответственно; $Z_{\rm H}$ – комплексное сопротивление нагрузки; $Z_{\rm B}$ – комплексное волновое сопротивление; A_{11}, A_{12} – элементы матрицы [A] для отрезка однородной линии; γ – коэффициент распространения линии; l – длина отрезка линии.

Указанная выше математическая модель однородной линии разработана, опираясь на известные телеграфные уравнения однородной линии при гармоническом воздействии [10].

При экспофункциональном воздействии телеграфные уравнения для ядер экспофункций $\widetilde{u}(x,t) \equiv \widetilde{u}$, $\widetilde{i}(x,t) \equiv \widetilde{i}$ выглядят следующим образом [7]:

$$-\frac{d\widetilde{u}}{dx} = \left(R \pm \lambda L\right)\widetilde{i} + L\frac{d\widetilde{i}}{dt},$$
(2)

$$-\frac{d\widetilde{i}}{dx} = \left(G \pm \lambda C\right)\widetilde{u} + C\frac{d\widetilde{u}}{dt},\tag{3}$$

где $\lambda > 0$ – параметр, характеризующий экспофункциональное воздействие [12]; \tilde{u} , \tilde{i} – произвольные функции напряжения и тока соответственно, не имеющие множитель $e^{\pm \lambda t}$ [12]. Из (2), (3) видно, что появились новые первичные параметры $(R \pm \lambda L)$ и $(G \pm \lambda C)$, которые характеризуют потери в линии при экспофункциональном воздействии (используя нижний знак при λ можно добиться компенсации потерь в линии).

Опираясь на равенства (2) и (3), запишем выражения для составляющих передаточной функции по напряжению (1) при экспофункциональном воздействии для линии, первичные параметры *R* и *G* которой зависят от частоты: γ – коэффициент распространения линии

$$\gamma(\lambda, f) = \sqrt{\left(\left(R(f) - \lambda L\right) + j\omega L\right)\left(\left(G(f) - \lambda C\right) + j\omega C\right)},\tag{4}$$

 $Z_{\rm B}$ – волновое сопротивление

$$Z_{\scriptscriptstyle B}(\lambda, f) = \sqrt{\frac{(R(f) - \lambda L) + j\omega L}{(G(f) - \lambda C) + j\omega C}}.$$
(5)

Подставив выражения (4) и (5) в выражение (1), получим передаточную функцию по напряжению для модели однородной линии с частотнозависимыми потерями при экспофункциональном воздействии. Из выражений (4) и (5) также видно, что при частотнозависимых потерях в линии возможна полная компенсация потерь, но лишь на одной конкретно заданной частоте. При этом параметр λ , который характеризует экспофункциональное воздействие, рассчитывается по формуле [5]

$$\lambda(f) = \frac{R(f)C + G(f)L}{2LC} \tag{6}$$

для одной конкретно заданной частоты.

Значения частотнозависимых потерь определяем согласно следующему выражению [13]:

$$R(f) = R_{\sqrt{\frac{f}{f_{\pi}}}},\tag{7}$$

где R – распределенное сопротивление линии на частотах до f_{π} ; f_{π} – пороговая частота; f – значение частоты свыше пороговой f_{π} . Значение проводимости изоляции линии на частотах свыше f_{π} возрастает согласно следующему выражению [13]:

$$G(f) = G\frac{f}{f_{\pi}},\tag{8}$$

где G – проводимость изоляции линии на частоте $f_{\rm n}$.

Для того чтобы приведенная выше математическая модель однородной линии с частотнозависимыми потерями при экспофункциональном воздействии отображала модель витой пары категории 5E класс D необходимо задать значения первичных параметров линии R, G, L, C на постоянном токе, а также сопротивление нагрузки $R_{\rm H}$, длину отрезка линии l и пороговою частоту $f_{\rm n}$, после которой потери приобретают зависимость от частоты.

В литературе [2] приведены значения величин R, G, C на определенные длины отрезков витой пары. Принимая во внимание указанные величины, получим значения первичных параметров линии на длину отрезка один метр: R = 0,095 Ом/м, $G = 0,2 \times 10^{-12}$ См/м, $C = 52 \times 10^{-12}$ Ф/м, значения погонной индуктивности не трудно вычислить [10] $L = 6,877 \times 10^{-7}$ Гн/м. Сопротивление нагрузки возьмем равное волновому сопротивлению $R_{\rm H} = Z_{\rm B} = 115$ Ом [2], длину отрезка витой пары l = 100 м. Таким образом, остается определить пороговою частоту $f_{\rm H}$.

Для этого проанализируем амплитудно-частотную характеристику (АЧХ) эквивалентной схемы замещения витой пары (длина отрезка 100 м) с частотнозависимыми потерями (рис. 2) [1, 3].

Рисунок 2 – Эквивалентная схема замещения витой пары с частотнозависимыми потерями согласно стандарту IEEE 802.3 (*l* = 100 м)

Соберем, показанную на рис. 2, схему в программной среде моделирования Multisim [14] и построим ее АЧХ (рис. 3).

Рисунок 3 – АЧХ эквивалентной схемы замещения витой пары (длина отрезка 100 м, частотная шкала показана в логарифмическом масштабе)

На рис. 3 отображена АЧХ эквивалентной схемы замещения витой пары (длина отрезка 100 м) при условии, что частотная шкала приведена в логарифмическом масштабе. Логарифмический масштаб частотной шкалы обусловлен необходимостью выявить пороговою частоту f_{π} , т.е. частоту, после которой появляются частотнозависимые потери. Согласно рис. 3, $f_{\pi} \approx 30$ кГц.

Необходимо отметить, что предложенная в стандарте IEEE 802.3 эквивалентная схема замещения витой пары (рис. 2) является не точной моделью отрезка витой пары, так как представляет собой *RLC*-цепь с сосредоточенными параметрами. Ввиду вышесказанного, указанная схема не может отображать все характеристики цепи с распределенными параметрами, например, данный прототип не отражает такую величину как время задержки сигнала при его прохождении через отрезок витой пары длиной 100 м.

Таким образом, используя инструмент в виде передаточной функции по напряжению для модели однородной линии с частотнозависимыми потерями при экспофункциональном воздействии, предварительно задав все необходимые параметры линии, получим математическую модель витой пары категории 5Е класс D при экспофункциональном воздействии.

2. Анализ математической модели витой пары при экспофункциональном воздействии. Проведем анализ однородной цепи с распределенными частотнозависимыми первичными параметрами на примере витой пары категории 5E класс D [2]. Указанный отрезок витой пары длиной l = 100 м имеет следующие первичные параметры: R = 0,095 Ом/м (на частотах до $f_{\rm m}$), $G = 0,2 \times 10^{-12}$ См/м (на частоте $f_{\rm m}$), $C = 52 \times 10^{-12}$ Ф/м, $L = 6,877 \times 10^{-7}$ Гн/м. Сопротивление нагрузки $R_{\rm m} = Z_{\rm m} = 115$ Ом, пороговая частота $f_{\rm m} \approx 30$ кГц.

Построим и проанализируем АЧХ указанной выше однородной линии с частотно-зависимыми первичными параметрами R и G (рис. 4), используя для этого выражение (1). Параметр λ рассчитаем по формуле (6) для частоты 10 МГц ($\lambda = 1,283 \times 10^6 \text{ c}^{-1}$).

Рисунок 4 – АЧХ модели линии (компенсация на частоте 10 МГц)

На рис. 4 кривая 1 – это АЧХ модели линии с частотнозависимыми потерями при экспофункциональном воздействии (параметр $\lambda = 1,283 \times 10^6$ с⁻¹ рассчитан для частоты 10 МГц (* – точка полной компенсации потерь в линии)); кривая 2 – это АЧХ модели линии без потерь (R = 0, G = 0); кривая 3 – это АЧХ модели линии с частотнозависимыми потерями при гармоническом воздействии (затухание на частоте 10 МГц составляет 6,55 дБ).

В литературе [2] приведены измеренные значения затухания исследуемого отрезка витой пары на некоторых частотах. Сравним значения затухания АЧХ, представленные в литературе [2], и полученные значения затухания АЧХ линии в результате моделирования (табл. 1). Из табл. 1 видно, что расхождения между измеренными значениями затухания АЧХ [2] и полученными с помощью описанной в данной работе математической модели не превышают 5 %, а расхождения между измеренными затухания АЧХ [2] и полученными с помощью описанной в данной работе математической модели не превышают 5 %, а расхождения между измеренными затухания АЧХ [2] и полученными с помощью среды моделирования Multisim не превышают 22 %. Из выше сказанного следует, что математическая модель линии при гармоническом воздействии, предложенная в работах [10, 11], и при экспофункциональном воздействии, предложенная в данной работе, способны с высокой точностью отображать электромагнитные процессы, происходящие в линии.

<i>f</i> , МГц	Измеренные значения затухания АЧХ [2] А , дБ	Значения затухания АЧХ модели линии (Multisim, рис. 3) <i>A</i> , дБ	Значения затухания АЧХ модели линии (MathCad, рис. 4 кривая 3) <i>A</i> , дБ
0,772	1,8	1,3	1,73
1	2	1,63	2,24
4	4,1	3,96	4,09
10	6,5	7,13	6,55
16	8,2	10,22	8,3
20	9,3	12,3	9,26
31,25	11,7	15	11,58
62,5	17	20,9	16,37
100	22	22,3	20,9

Таблица 1 – Значения затухания АЧХ витой пары

Анализируя кривую АЧХ под номером 1 (рис. 4), видно, что при экспофункциональном воздействии полная компенсация потерь в линии выполняется только лишь на той определенной частоте, для которой рассчитан параметр λ . Таким образом, рассчитывая параметр λ для определенной частоты, точку полной компенсации потерь в линии (*) можно перемещать по частоте как вправо, так и влево по характеристике 2. Например, для компенсации потерь на частоте 50 МГц необходимо рассчитать величину параметра λ по формуле (6) для этой частоты, после чего подать на вход линии экспофункциональный сигнал с учетом рассчитанной величины ($\lambda = 2,868 \times 10^6 \text{ c}^{-1}$), в результате получим АЧХ (рис. 5).

Рисунок 5 – АЧХ модели линии (компенсация на частоте 50 МГц)

На рис. 5 (кривая 1) видно, что точка полной компенсации потерь в линии (*) находится на частоте 50 МГц, в то время как затухание гармонического сигнала на этой же частоте равно 14,9 дБ (кривая 3 рис. 5). Для компенсации потерь на частоте 120 МГц необходимо подать на вход модели линии экспофункциональный сигнал, предварительно рассчитав параметр λ для указанной частоты ($\lambda = 4,443 \times 10^6 \text{ c}^{-1}$) (рис. 6).

Рисунок 6 – АЧХ модели линии (компенсация на частоте 120 МГц)

Из рис. 6 (кривая 1) видно, что точка полной компенсации потерь в линии (*) переместилась на частоту 120 МГц, а затухание гармонического сигнала на этой же частоте равно 23,5 дБ (кривая 3 рис. 6).

Анализ АЧХ, представленных на рис. 5 и 6 (обозначения на рис. 5 и 6 соответствуют опиисанию обозначений для рис. 4), показывает, что при допустимом затухании в линии, например, 3 дБ с помощью экспофункционального воздействия можно обеспечить полосу пропускания 40 – 45 МГц. При этом необходимо отметить, что проведенные в работе [5] исследования прохождения П-образных импульсов через модель полосковой линии при экспофункциональном воздействии, выявили особенности, связанные с временем задержки сигнала, которые появились вследствие влияния фазочастотной характеристики экспофункционального сигнала. Таким образом, опираясь на результаты исследований, которые проведены в работе [5], можно утверждать, что при экспофункциональном воздействии на модель линии, исследуемой в данной работе, можно обеспечить полосу пропускания (максимальное затухание в полосе пропускания 3 дБ) шириной 40 – 45 МГц при условии, что фаза выходного сигнала при эксповоздействии будет отличаться на 180° от фазы выходного сигнала без эксповоздействия. Если же необходимо сохранить синфазность выходного сигнала при экспофункциональном воздействии с выходным сигналом без экспофункционального воздействия, то ширина полосы пропускания с затуханием не больше 3 дБ при экспофункциональном воздействии уменьшается ровно в два раза и составляет 20 – 22,5 МГц. В связи с указаным выше фактом, необходимо внести коррективы в выражение (6), которое предназначено для расчета значения параметра λ. Т.е., для компенсации частотнозависимых потерь в линии величину λ необходимо рассчитывать для частоты, которая на 0,1 МГц меньше той частоты, на которой необходимо скомпенсировать потери. В результате, такая методика расчета параметра λ даст возможность получить синфазную ФЧХ на той частоте, на которой необходимо скомпенсировать потери. Например, если потери в линии необходимо скомпенсировать на частоте 10 МГц, то параметр λ необходимо рассчитывать для частоты 9,9 МГц, что в свою очередь приведет к полной компенсации потерь на частоте 9,9 МГц и незначительной недокомпенсации на частоте 10 МГц, но ФЧХ на частоте 10 МГц при экспофункциональном и гармоническом воздействиях будут синфазны.

3. Прохождение П-образных и экспо-П-образных импульсов через модель витой пары. Далее рассмотрим прохождение П-образных и экспо-П-образных импульсов [8] через вышеприведенные модели линий. Для этого по известным формулам [10, 15, 16] разложим П-образный сигнал в комплексный ряд Фурье. Параметры П-образного сигнала возьмем следующие: частота следования импульсов f = 10 МГц, длительность П-импульса $t_{\mu} = 50$ нс, количество членов ряда Фурье n = 9, (рис. 7).

Рисунок 7 – П-образный сигнал

На рис. 7 кривая под номером 1 – это аппроксимирующая функция П-образного импульса, кривая под номером 2 – это графическое изображение П-образного сигнала, разложенного в ряд Фурье.

Подадим П-образный сигнал, показанный на рис. 7, на вход моделей вышеуказанных линий и в результате на выходе получим следующие характеристики, (рис. 8).

На рис. 8 кривая 1 – это П-образный сигнал на выходе модели линии без потерь; кривая 2 – это П-образный сигнал на выходе модели линии с частотнозависимыми потерями при экспофункциональном воздействии (параметр λ рассчитан для частоты 9,9 МГц ($\lambda = 1,282 \times 10^6 \text{ c}^{-1}$)); кривая 3 – это П-образный сигнал на выходе модели линии с частотнозависимыми потерями (затухание сигнала равно 6 дБ). На рис. 8 явно видно, что экспофункциональный сигнал (экспо-П-образный сигнал) обеспечивает компенсацию частотнозависимых потерь в исследуемой модели линии.

На следующем этапе увеличим частоту следования П-импульсов в 10 раз, подав на вход исследуемых моделей линий П-образный сигнал со следующими параметрами: частота следования импульсов f = 100 МГц, длительность П-импульса $t_{\mu} = 5$ нс, количество членов ряда Фурье n = 9. В результате на выходе моделей линий получим следующие характеристики рис. 9.

Рисунок 9 – П-образный сигнал на выходе моделей линии

На рис. 9 кривая 1 – это П-образный сигнал на выходе модели линии без потерь; кривая 2 – это П-образный сигнал на выходе модели линии с частотнозависимыми потерями при экспофункциональном воздействии (параметр λ рассчитан для частоты 99,9 МГц ($\lambda = 4,054 \times 10^6 \text{ c}^{-1}$)); кривая 3 – это П-образный сигнал на выходе модели линии с частотно-зависимыми потерями (затухание сигнала равно 20,9 дБ). На рис. 9 видно, что экспофункциональный сигнал (экспо-П-образный сигнал) обеспечивает компенсацию частотно-зависимых потерь на частоте следования импульсов 100 МГц.

Увеличим в исследуемых моделях длину отрезка линии l до 150 м и подадим на вход полученных моделей линии П-образный сигнал с частотой следования импульсов f = 100 МГц, длительность П-импульса $t_{\mu} = 5$ нс (для экспофункционального сигнала параметр λ рассчитаем для частоты 99,9 МГц). В результате на выходе моделей получим следующие характеристики рис. 10.

Рисунок 10 – П-образный сигнал на выходе моделей линии (*l* = 150 м)

На рис. 10 кривая 1 – это П-образный сигнал на выходе модели линии без потерь; кривая 2 – это П-образный сигнал на выходе модели линии с частотнозависимыми потерями при экспофункциональном воздействии (параметр λ рассчитан для частоты 99,9 МГц ($\lambda = 4,054 \times 10^6 \text{ c}^{-1}$));

кривая 3 – это П-образный сигнал на выходе модели линии с частотно-зависимыми потерями (затухание сигнала равно 31 дБ).

Таким образом, в данной работе получена математическая модель витой пары категории 5E класса D при экспофункциональном воздействии. Результаты исследований полученной модели доказывают способность экспофункционального сигнала компенсировать частотнозависимые потери в кабельных линиях связи. Следовательно, при необходимости, используя экспофункциональный сигнал, длину отрезка витой пары, соединяющий коммутационное оборудование с рабочей станцией, можно увеличить. Или же при рекомендуемой в стандарте длине сегмента (100 м) указанного выше отрезка кабеля с помощью экспофункционального сигнала можно несколько расширить его рабочий диапазон частот, а значит увеличить скорость передачи информации.

Литература

- 1. *Адамов Ю*. Эквалайзеры в цифровых кабельных интерфейсах / Ю. Адамов, Я. Губин, О. Сомов // ЭЛЕКТРОНИКА: Наука, Технология, Бизнес. – 2006. – № 3. – С. 70 – 73.
- 2. Парфенов Ю.А. Кабели электросвязи / Парфенов Ю.А. М.: Эко-Трендз, 2003. 256 с.
- IEEE Standard for Information technology: Telecommunications and information exchange between systems — Local and metropolitan area networks. Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications: IEEE Std 802.3 — 2002. — 1538 р. (Международный стандарт).
- 4. *Іваницький А.М.* Явище виділення активної потужності реактивними елементами електричного кола / Диплом на відкриття НВ № 3, зареєстровано 12.01.99; пріоритет від 30.11.94.
- 5. Иваницкий А.М. Компенсация потерь в линиях с частотнозависимыми первичными параметрами *R* и *G* с помощью экспофункциональных сигналов / А.М. Иваницкий, М.В. Рожновский // Исследование электрических цепей и электромагнитных полей при экспофункциональных воздействиях (цикл 3) (Заключительный): Отчет по НИР (Шифр «Компенсація – 3») / Одесская национальная академия связи им. А.С. Попова; ГР №0109U008009. – Одесса, 2010. – С. 29 – 73.
- 6. *Иваницкий А.М.* Исследование прохождения экспофункциональных сигналов через линейные электрические цепи с распределенными параметрами / А.М. Иваницкий, Д.Г. Паску // Наукові праці ОНАЗ ім. О.С. Попова. 2008. № 2. С. 5 9.
- 7. *Иваницкий А.М.* Телеграфные уравнения однородных линий при экспофункциональных сигналах / А.М. Иваницкий, М.В. Рожновский // Наукові праці ОНАЗ ім. О.С. Попова. 2009. № 1. С. 56 53.
- 8. *Иваницкий А. М.* Прохождение экспо-П-образных сигналов через длинную однородную линию без искажений / А.М. Иваницкий, М.В. Рожновский // Цифровые технологии. 2008. № 4. С. 93 102.
- 9. *Иваницкий А.М.* Исследование однородной линии с произвольными потерями при экспофункциональном воздействии / А.М. Иваницкий, М.В. Рожновский // Практическое применение в реальных устройствах экспофункциональных сигналов: Отчет по НИР (Шифр «Практика») / Одесская национальная академия связи им. А.С. Попова; ГР № 0108u010947. Одесса, 2008. С. 36 54.
- 10. *Атабеков Г.И.* Основы теории цепей (Учебник для вузов)/ Атабеков Г.И. М.: Энергия, 1969. 424 с.
- 11. Зелях Э.В. Основы общей теории линейных электрических схем / Зелях Э.В. М.: АН СССР, 1951. 236 с.
- 12. *Иваницкий А.М.* Зависимость третьего и четвертого уравнений Максвелла от первых двух при произвольном возбуждении электромагнитного поля / А.М. Иваницкий // Наукові праці ОНАЗ ім. О.С. Попова. 2004. № 2. С. 2 7.
- 13. *Thierauf Stephen C.* High-Speed Circuit Board Signal Integrity / Thierauf Stephen C. Artech House, Inc. Boston, London, 2004. 243 p.
- 14. *Карлащук В.И.* Электронная лаборатория на IBM PC. Лабораторный практикум на базе Electronics Workbench и Matlab. [5-е изд., перер. и доп.] / Карлащук В.И. М.: СОЛОН-Пресс, 2004. 799 с.
- 15. Скляр Б. Цифровая связь. Теоретические основы и практическое применение / Скляр Б. [2-е изд., испр.],: пер. с англ. М.: Изд. дом "Вильямс", 2003. 1104 с.
- 16. Эдвардс Р. Ряды Фурье в современном изложении. Том 1 / Эдвардс Р., пер. с англ. М.: Мир, 1985. 260 с.