УДК 621.391.25:681.7.068

Розенвассер Д.М. Розенвассер Д.М. Rozenvasser D.M.

СРАВНЕНИЕ ПОМЕХОУСТОЙЧИВЫХ КОДОВ ВОСП

ПОРІВНЯННЯ ЗАВАДОСТІЙКИХ КОДІВ ВОСП

COMPARISON OF ERROR-CONTROL CODES OF FOTS

Аннотация. В работе дано сравнение нескольких помехоустойчивых кодов по различным параметрам, в том числе по энергетическому выигрышу кодирования, который позволяет оценивать целесообразность использования кодов в волоконно-оптических системах передачи.

Анотація. У роботі подано порівняння кількох завадостійких кодів за різними параметрами, у тому числі за енергетичним виграшем кодування, що дозволяє оцінювати доцільність використовування кодів у волоконно-оптичних системах передавання.

Summary. Several error-control codes for the various parameters was compared in this work, including the coding gain, which allows to evaluate the reasonability of codes using in the fiber optic transmission systems.

Проблема повышения эффективности функционирования волоконно-оптических систем передачи (ВОСП) с использованием корректирующих кодов привлекает внимание исследователей в последнее время. Вопросы построения и применения кодов (блоковых кодов Хэмминга, Боуза-Чоудхури-Хоквингема (БЧХ), Рида-Соломона (РС); свёрточных кодов; многопорогового декодирования самоортогональных (МПД-СОК) кодов; комбинаций кодов — каскадного кода и турбокода) рассматриваются во многих работах, как зарубежных [1, 2], так и отечественных авторов [3]. В известных работах [1–3] основное внимание уделяется уменьшению вероятности ошибки при внедрении корректирующего кода.

Однако в литературе не было произведено сравнение по другому, важному для систем ВОСП, параметру – энергетическому выигрышу кодирования (ЭВК).

Целью статьи является сравнение основных классов помехоустойчивых кодов по различным критериям, в том числе и по ЭВК.

Наиболее популярны в системах SDH/WDM коды Рида—Соломона [2]. Они являются недвоичными блоковыми кодами и относятся к полиномиальным кодам, компоненты кодовых слов которых равны значениям определенных полиномов порядка k-1. Они имеют кодовое слово вида $(2^m-1, k, d)$, где d=n-k+1, и являются кодами с максимально достижимым d. Эти коды способны исправлять до (n-k)/2 случайных одиночных ошибок и любой пакет ошибок длиной до (n-k) ошибок. Именно эти свойства, а также наличие эффективных алгоритмов декодирования относительно длинных кодов объясняют причину их популярности в системах SDH/WDM.

На примере кода Рида-Соломона порядок расчетов таков [3]:

– для заданного кода (255, 239,17) рассчитываем вероятность ошибки на входе декодера при ФМ-2 и канале с аддитивным белым гауссовым шумом (АБГШ):

$$p(h^2) = Q(\sqrt{2r_{PC}h_p^2}),$$

где Q(x) – гауссовская Q-функция; r_{PC} – скорость кода Рида—Соломона; h^2 – отношение сигнал/шум в децибелах; h_p^2 – отношение сигнал/шум в разах;

– далее находим вероятность ошибки символа (т. е. кодового слова) на выходе декодера

$$P_s(h^2) = 1 - (1 - p(h^2))^m$$

– и переходим к вероятности ошибки на бит на выходе декодера РС

$$P_{bPC}(h^2) = \sum_{i=q+1}^{n} \left[P_s(h^2)^i (1 - P_s(h^2))^{n-i} C_n^i \frac{i+q}{n} \right] \frac{2^{m-1}}{2^m - 1},$$

где q – кратность исправляемых ошибок;

 C_n^i – количество сочетаний из n по i.

Полученные результаты практически полностью соответствуют приведенным в рекомендации ITU G-975 [4] (рис. 1).

Расчеты по остальным классам кодов проводились аналогично. Зависимости вероятности ошибки на бит от отношения сигнал/шум, дБ, для перечисленных кодов представлены на рис. 2, где цифрами обозначены кривые, соответствующие системам передачи: I – без кода; 2 – с кодом Хэмминга; 3 – с кодом БЧХ; 4 – с кодом РС; 5 – с МПД–СОК; 6 – со сверточным кодом со свободным расстоянием d_f = 18; 7 – со сверточным код со свободным расстоянием d_f = 5; 8 – с каскадным кодом; 9 – с турбокодом.

Из графиков видно, что при высоких вероятностях ошибки (т. е. при малых отношениях сигнал/шум) лучшим из рассмотренных является турбо-код, а при низких вероятностях ошибки (т. е. при больших отношениях сигнал/шум) оптимальным будет каскадный код.

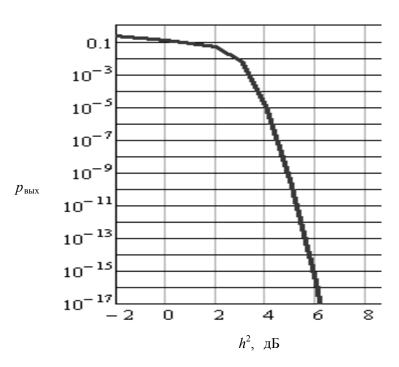


Рисунок 1 — График вероятности ошибки на бит от отношения сигнал/шум для кода Рида-Соломона (255, 239, 17)

Код Рида-Соломона показывает средние результаты.

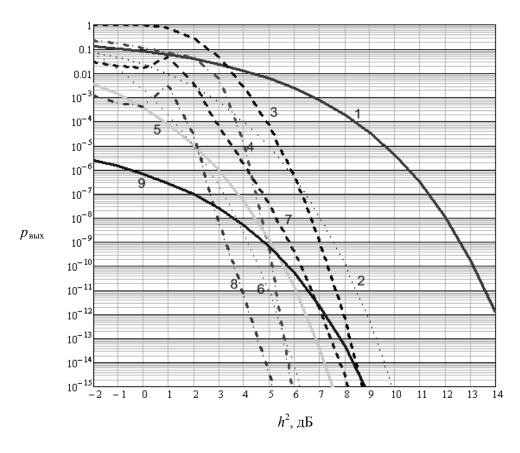


Рисунок 2 – График зависимости вероятности ошибки на бит от отношения сигнал/шум, дБ

Однако совсем другие результаты (в сравнении с остальными кодами) показывает код Рида—Соломона при расчете ЭВК (рис. 3), где цифрами обозначены кривые, соответствующие системам передачи: I— с кодом Хэмминга; 2— с кодом БЧХ; 3— с кодом РС; 4— с МПД—СОК; 5— со сверточным кодом со свободным расстоянием d_f = 18; 6— со сверточным кодом со свободным расстоянием d_f = 5; 7— с каскадным кодом; 8— с турбокодом. Это можно объяснить тем, что при определении ЭВК кроме отношений сигнал/шум, в системе передачи с кодом и без него учитывается также скорость кода, которая у кода РС равна $r_{\rm PC}$ = 0,937. Для сравнения скорость турбокода равна $r_{\rm турбо}$ = 0,5, а каскадного $r_{\rm каскал}$ = 0,469.

Рассчитаем ЭВК кода Рида-Соломона:

$$\Theta BK_{PC} = \Delta PC + 10\log(r_{PC}) = h_1^2 - h_2^2 + 10\log(r_{PC}),$$

где h_1^2 и h_2^2 – отношения сигнал/шум в системе передачи без кодирования и с кодированием соответственно;

 $\Delta {\rm PC}$ — разность отношений сигнал/шум h_1^2 и h_2^2 для кода Рида—Соломона.

Для всех значений вероятностей ошибки меньше 10^{-7} код Рида-Соломона дает выигрыш 6,5...8,5 дБ, что значительно больше ЭВК остальных кодов. А при больших вероятностях турбокод показывает такие же хорошие результаты, а код РС оказывается несколько хуже.

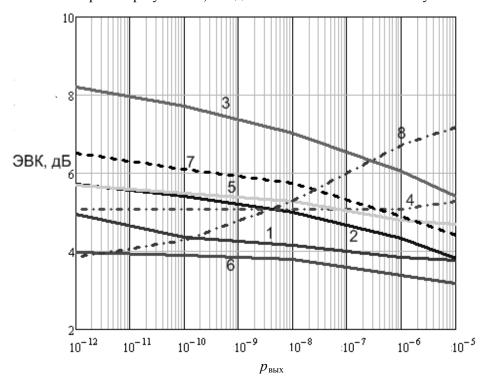


Рисунок 3 – График зависимости ЭВК от вероятности ошибки

Результаты расчетов для остальных кодов приведены в табл. 1.

Таблица 1– ЭВК основных классов корректирующих кодов, дБ

Вероятность ошибки	1.		_		
Коректирующий код	10^{-5}	10^{-6}	10^{-8}	10^{-10}	10^{-12}
Хемминга (31, 26)	3,78	3,84	4,16	4,36	4,94
БЧХ (255, 239)	3,82	4,33	5,01	5,42	5,72
Рида-Соломона (РС) (255, 239, 17)	5,42	6,04	7,03	7,72	8,20
МПД-СОК (7, 4)	5,27	5,07	5,07	5,07	5,07
Сверточный код $d_f = 18$ (СК-18)	4,68	4,79	5,30	5,51	5,67
Сверточный код $d_f = 5$ (СК-5)	3,19	3,39	3,8	3,89	3,97
Каскадный код	4,41	4,9	5,74	6,1	6,51
Турбокод (37, 21, 65536)	7,19	6,73	5,29	4,28	3,85

На рис. 4 показан предел Шеннона для канала с АБГШ (сплошная линия 10) и точки, соответствующие системам передачи без кодирования и с перечисленными методами устойчивого кодирования. На этом рисунке цифрами обозначены кривые, соответствующие системам передачи: 1 – без кода, 2 – с кодом Хэмминга, 3 - c кодом БЧХ, 4 - c кодом РС, 5 - cМПД-СОК, 6 - со сверточным кодом со свободным расстоянием $d_f = 18, 7 - co$ сверточным код со свободным расстоянием $d_f = 5$, 8 - c каскадным кодом, 9 - c турбокодом.

Координаты точек на примере РС были рассчитаны следующим образом:

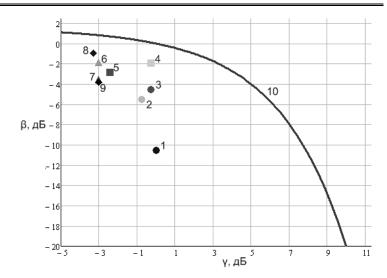


Рисунок 4 — График зависимости энергетической и частотной эффективности при вероятности ошибки 10^{-12}

- энергетическая эффективность обратно пропорциональна отношению сигнал/шум

$$eta_{
m PC} = -h_{
m PC}^2$$
; $eta_{
m PC} = -4{,}252\,$ дБ;

- частотная эффективность

$$\gamma_{PC} = 10 \log(\frac{R}{F_{PC}});$$
 $\gamma_{PC} = -0.281 \text{ дБ}.$

Из графика на рис. 4 видно, что примерно на одинаковом расстоянии от предела Шеннона расположены системы передачи с каскадным кодом и кодом Рида—Соломона. При вероятности ошибки 10^{-12} эти точки находятся на расстоянии всего 2 дБ от предела Шеннона, остальные системы передачи по этим показателям хуже.

Выбор корректирующего кода, который будет использован, может основываться и на других критериях, таких как сложность реализации, быстродействие и другие. Обоснованию и рекомендациям относительно выбора того или иного кода для конкретных систем передачи будут посвящены дальнейшие исследования.

В заключение можно сказать следующее: в данной работе было произведено сравнение основных классов помехоустойчивых кодов по различным критериям. При сравнении по энергетическому выигрышу кодирования лучшим из рассмотренных является код Рида-Соломона. Этот же код наравне с каскадным является лучшим и по эффективности.

Литература

- 1. *Мак-Вильямс Ф.Дж.А.* Теория кодов, исправляющих ошибки / Ф.Дж.А. Мак-Вильямс, Н.Дж.А. Слоэн; пер. с англ. М.: Связь, 1979.
- 2. *Морелос-Сарагоса Р.* Искусство помехоустойчивого кодирования / Морелос-Сарагоса Р. М.: Техносфера, 2005.
- 3. *Золотарев В.В.* Помехоустойчивое кодирование. Методы и алгоритмы: справочник / В.В. Золотарев, Г.В. Овечкин. М.: Горячая линия Телеком, 2004.
- 4. *ITU-T* Recommendation G.975.1. Forward error correction for high bit-rate DWDM submarine systems, 2004.