УДК 621.396.67

Проценко М.Б., Мамедов Н.И. Проценко М.Б., Мамедов Н.І. Protsenko M.B., Mamadov N.I.

ШИРОКОДИАПАЗОННОЕ УСТРОЙСТВО ВОЗБУЖДЕНИЯ ДВУХВХОДОВОЙ РАМОЧНОЙ АНТЕННЫ

ШИРОКОДІАПАЗОННИЙ ПРИСТРІЙ ЗБУДЖЕННЯ ДВОВХОДОВОЇ РАМКОВОЇ АНТЕНИ

WIDEBAND DEVICE OF EXCITATION ON TWO-INPUT LOOP ANTENNA

Аннотация. В статье представлены результаты исследований широкодиапазонного фазовращателя для использования в качестве устройства возбуждения двухвходовой рамочной антенны. Приводится методика расчета элементов фазовращателя, а также результаты численных исследований.

Анотація. У статті представлені результати досліджень широкодіапазонного фазообертача для використання як пристрою збудження двовходової рамкової антени. Наводиться методика розрахунку елементів фазообертача, а також результати чисельних досліджень.

Summary. The results of wideband phase shifter for the excitation circuit of two-input loop antenna research are presented in the article. The technique of the calculation of phase shift parameters and the results of numerical research are presented as well.

К одной из ключевых проблем антенной техники можно отнести проблемы создания широкодиапазонных и малогабаритных излучателей, обладающих при этом ярко выраженной характеристикой направленности [1, 2]. Разработка таких излучателей сопряжена с определенными трудностями, как теоретического, так и практического характера. В работе [3] показана возможность построения малогабаритного излучателя в виде рамочной антенны с двухточечным возбуждением, формирующим и сохраняющим в широком диапазоне частот кардиоидную форму диаграммы направленности. Для обеспечения такого режима излучения необходимо возбуждать ортогональные входы антенны равноамплитудно с фазовым сдвигом 90°. На основании отмеченного можно сформулировать научно-техническую задачу — разработать широкодиапазонный фазовращатель, включая проведение ряда теоретических и экспериментальных исследований с целью оптимизации его параметров и характеристик.

В настоящее время известны различные схемы построения фазовращателей, отличающихся, как дискретностью изменения фазового сдвига, стабильностью получаемых характеристик в полосе частот, так и сложностью реализации. Среди наиболее используемых схем построения можно выделить фазовращатели проходного и отражательного типов с сосредоточенными и (или) распределенными элементами [4]. Основными недостатками таких фазовращателей являются относительно малая широкополосность и наличие потерь в схеме.

Потенциально широкополосными свойствами обладают фазовращатели в виде мостовых четырехполюсников – фазовых контурах типа µ. Их отличительной особенностью является независимое от частоты характеристическое сопротивление и отсутствие потерь. Исследование [5,6] фазовращателей на фазовых контурах типа µ различных порядков показали, что схемы этого типа в общем случае позволяют получить равноволновую аппроксимацию постоянного фазового сдвига. При заданной ошибке фазового сдвига полоса пропускания фазовращателя быстро растет с ростом порядка используемых фазовых контуров. При этом на практике схема на фазовых контурах второго порядка способна обеспечить формирование фазового сдвига в десятикратном и более диапазоне частот [5 ... 7].

Математической моделью таких фазовращателей является комплексный коэффициент передачи (передаточная функция). В [5, 6] передаточная функция фазовращателей на фазовых контурах различных порядков определена в виде отношения полиномов с соответствующими степенями. Расчет нулей (полюсов) данных полиномов, а на их основе передаточной функции и значений элементов контуров, осуществляется приближенно с использованием графоаналитического метода. Это существенно затрудняет разработку фазовращателя и делает невозможным, в дальнейшем, процесс оптимизации в случае комплексных сопротивлений нагрузки (частотно-зависимых входных сопротивлениях двухвходовой рамочной антенны [3]).

Таким образом, целью данной работы явилось получение математической модели широкодиапазонного фазовращателя на фазовых контурах второго порядка в аналитическом виде, исследование его характеристик и разработка устройства для включения в состав широкодиапазонного малогабаритного излучателя [3]. Принцип работы фазовращателя на фазовых контурах основан на формировании требуемого фазового сдвига в широкой полосе частот при помощи двух четырехполюсников с фазочастотными характеристиками $\phi_1(\omega)$ и $\phi_2(\omega)$, удовлетворяющих условию

$$\left| \phi_{1}(\omega) - \phi_{2}(\omega) - \phi_{12} \right| \leq \Delta \phi, \ \omega_{1} \leq \omega \leq \omega_{2},$$

где ϕ_{12} – требуемый фазовый сдвиг; $\Delta \phi$ – допустимая фазовая ошибка; ω_1, ω_2 – граничные частоты диапазона.

Рисунок 1 – Схемы фазовращателя *а* и фазового контура второго порядка б

Структурная схема исследуемого фазовращателя изображена на рис. 1, *а*. Фазовращатель имеет несимметричный вход и выходы, что определено несимметричным вариантом построения малогабаритного излучателя, в схеме возбуждения которого будет использован данный фазовращатель. Схема (см. рис. 1, *а*) состоит из трех блоков, один из которых делитель мощности, а другие – однотипные фазовые контуры второго порядка с фазочастотными характеристиками $\phi_1(\omega)$ и $\phi_2(\omega)$ соответственно. Один из фазовых контуров изображен на рис. 1,*б*. Он построен по дифференциальномостовой схеме, эквивалентной по характеристическим параметрам обычной мостовой схеме (см., например, [6]).

Характеристические параметры (Z_c, Γ_c) мостовой схемы находятся из выражений:

$$Z_{c} = \sqrt{Z_{1}Z_{1}^{*}}; \text{ th}(0,5\Gamma_{c}) = \sqrt{Z_{1}/Z_{1}^{*}}; \Gamma_{c} = A_{c} + jB_{c}, \qquad (1)$$

где Z_1, Z_1^* – взаимообратные двухполюсники ($Z_1Z_1^* = R^2, R$ – сопротивление нагрузки).

Если четырехполюсники имеют чисто реактивное сопротивление, как в анализируемом случае, т.е.

$$Z_{1} = jX_{1}(\omega) = j2\left[\omega L_{1} - (\omega C_{1})^{-1}\right]; \quad Z_{1}^{*} = jX_{1}^{*}(\omega) = -j2 \frac{L_{1}^{*}/C_{1}^{*}}{\left[\omega L_{1}^{*} - (\omega C_{1}^{*})^{-1}\right]},$$

и являются взаимообратными $L_1/C_1^* = L_1^*/C_1 = R^2$, то $A_c = 0$ и согласно (1) th(0,5) $\Gamma_c = jtg(0,5B_c) = j \frac{|Z_1|}{2}$.

Отсюда
$$B_c = 2 \operatorname{arctg}\left(\frac{|Z_1|}{R}\right) = 2 \operatorname{arctg}\left(\frac{X_1(\omega)}{R}\right)$$
. Но так как $\varphi(\omega) = -B_c$, то
 $\varphi_1(\omega) = -2 \operatorname{arctg}\left(\frac{X_1(\omega)}{2R}\right)$. (2)

Схема второго контура однотипна, а элементы схемы обозначены также, но с индексом 2. Тогда

$$\varphi_2(\omega) = -2 \arctan\left(\frac{X_2(\omega)}{2R}\right). \tag{3}$$

Используя (2) и (3), получаем искомый фазовый сдвиг, точнее его зависимость от частоты

$$\varphi_{12}(\omega) = -2\left[\operatorname{arctg}\left(\frac{X_1(\omega)}{2R}\right) - \operatorname{arctg}\left(\frac{X_2(\omega)}{2R}\right)\right] = -2\operatorname{arctg}\left(\frac{2R\left[X_1(\omega) - X_2(\omega)\right]}{4R^2 + X_2(\omega)X_1(\omega)}\right).$$
(4)

Анализ (4) показал, что частотная зависимость $\phi_{12}(\omega)$ в полосе частот имеет двухгорбый характер, причем наблюдаются отклонения от заданного значения ϕ_{12} , как в сторону увеличения $\phi_{12} + \Delta \phi$, так и в сторону уменьшения $\phi_{12} - \Delta \phi$. Данные отклонения зависят от относительных характеристических сопротивлений (проводимостей) используемых контуров и отношения резонансных частот первого и второго фазового контура. Задавая численные значения этих отклонений или требуемый фазовый сдвиг ϕ_{12} и допустимую фазовую ошибку $\Delta \phi$, можно решить обратную задачу, а именно вычислить значения относительных характеристических сопротивлений (проводимостей) и отношения резонансных частот.

Опуская промежуточные преобразования (4) и введя дополнительное условие – равенство относительных характеристических сопротивлений и проводимостей всех контуров (и в первого, и второго фазовых контуров), а также обозначив вновь введенные параметры как

$$\frac{1}{R}\sqrt{\frac{L_1}{C_1}} = R\sqrt{\frac{C_1^*}{L_1^*}} = \frac{1}{R}\sqrt{\frac{L_2}{C_2}} = R\sqrt{\frac{C_2^*}{L_2^*}} = \alpha; \qquad 4\sqrt{\frac{L_1C_1}{L_2C_2}} = 4\sqrt{\frac{L_1^*C_1^*}{L_2^*C_2^*}} = \beta, \tag{5}$$

получаем:

$$\alpha = 0,5 \left[tg \left(\frac{\phi_{12} - \Delta \phi}{4} \right) ctg \left(\frac{\phi_{12} - \Delta \phi}{2} \right) \left(1 - \sqrt{1 - tg^2 \left(\frac{\phi_{12} - \Delta \phi}{2} \right) ctg^2 \left(\frac{\phi_{12} + \Delta \phi}{2} \right)} \right) \right]^{\frac{1}{2}}; \quad (6)$$

$$\beta = \frac{1}{2\alpha} \operatorname{tg}\left(\frac{\varphi_{12} - \Delta\varphi}{4}\right) + \sqrt{1 + \frac{1}{4\alpha^2} \operatorname{tg}^2\left(\frac{\varphi_{12} - \Delta\varphi}{4}\right)}.$$
(7)

На основании (6) и (7) можно определить значения элементов соответствующих контуров, использовав (5) и предварительно задав среднюю частоту диапазона ω_0 и отношения средней частоты к резонансным частотам фазовых контуров β_1 и β_2 , учитывая при этом полученное значение β из (7) в виде

$$\beta = \sqrt{\beta_1/\beta_2}$$
, где $\beta_1 = \omega_0 \sqrt{L_1 C_1} = \omega_0 \sqrt{L_1^* C_1^*}$ и $\beta_2 = \omega_0 \sqrt{L_2 C_2} = \omega_0 \sqrt{L_2^* C_2^*}$. (8)

Первоначальный выбор численного значения β_1 (или β_2) в определенной степени является произвольным.

Далее, решая уравнения (5) и (8) относительно неизвестных L_1, C_1, L_1^*, C_1^* и L_2, C_2, L_2^*, C_2^* , по-лучаем

$$C_{1} = \left(\frac{\beta_{1}}{\omega_{0}}\right) \left(\frac{1}{\alpha R}\right); \qquad L_{1} = C_{1} \left(\alpha R\right)^{2}; \qquad C_{2} = \left(\frac{\beta_{2}}{\omega_{0}}\right) \left(\frac{1}{\alpha R}\right); \qquad L_{2} = C_{2} \left(\alpha R\right)^{2}; \\ L_{1}^{*} = \left(\frac{\beta_{1}}{\omega_{0}}\right) \left(\frac{R}{\alpha}\right); \qquad C_{1}^{*} = L_{1}^{*} \left(\frac{\alpha}{R}\right)^{2}; \qquad L_{2}^{*} = \left(\frac{\beta_{2}}{\omega_{0}}\right) \left(\frac{R}{\alpha}\right); \qquad C_{2}^{*} = L_{2}^{*} \left(\frac{\alpha}{R}\right)^{2}.$$

С использованием полученных формул проведены расчеты, результаты которых приведены в табл. 1 в виде соответствующих значений элементов фазовращателя.

Tuosinida 1 Tuo letinise sita letinis sitementois quisopatidatesis									
β_2	$\frac{\left(\omega_{1}\omega_{2} ight)}{2\pi}$, МГц	<i>L</i> , мкГн				С, пФ			
		$2L_1$	$2L_2$	$2L_{1}^{*}$	$2L_2^*$	$0, 5C_1$	$0, 5C_2$	$0,5C_1^*$	$0,5C_{2}^{*}$
0,3	5,249,3	2,2	0,6	28,4	7,3	177	45	14	3
0,5	3,030,0	3,6	0,9	47,3	12,1	296	75	23	6
0,7	2,221,2	5,1	1,3	66,3	16,9	414	106	32	8

Таблица 1 – Расчетные значения элементов фазовращателя

Исходными данными к расчетам были: частотный диапазон 3...30 МГц со средней частотой

 $\omega_0/2\pi = 9,487$ МГц; требуемый фазовый сдвиг $\phi_{12} = 90^\circ$ с допустимой фазовой ошибкой $\Delta \phi = 2^\circ$; сопротивление нагрузок R = 200 Ом. В процессе вычислений варьировался параметр β_2 с целью получения требуемого коэффициента перекрытия по частоте в заявленных границах частотного диапазона.

На рис. 2 изображены частотные зависимости фазового сдвига, рассчитанные на основе полученной математической модели (4) и данных табл. 1. Согласно рис. 2 видно, что различные значения β_2 приводят к изменениям, как коэффициента перекрытия по частоте, так положения требуемого диапазона на частотной оси. В результате численного моделирования с учетом многопараметричности задачи найдено оптимальное значение $\beta_2 = 0, 5$, позволяющее удовлетворит поставленным требованиям в целом.

Рисунок 2 – Частотная зависимость фазового сдвига

Таким образом, согласно проведенным исследованиям можно сформулировать следующие выводы:

– разработана математическая модель широкодиапазонного фазовращателя на фазовых контурах второго порядка;

- разработана методика расчета элементов фазовых контуров;

проведены расчеты элементов схемы применительно для использования широкодиапазонного фазовращателя в составе малогабаритного рамочного излучателя [3], работающего в диапазоне 3...30 МГц и обладающего входным сопротивлением на каждом из входе 200 Ом;

- исследованы частотные зависимости фазового сдвига.

К дальнейшим исследованиям в данном направлении следует отнести оптимизацию значений элементов фазовых контуров при частотно-зависимых комплексных сопротивлениях нагрузок, а также макетирование устройства и экспериментальное исследование его характеристик.

Литература

- 1. Современное состояние исследований малогабаритных антенн / [Киселев В.П., Сайко В.Г., Ильинов М.Д. и др.] // Зарубежная радиоэлектроника. – 1990. – № 5. – С. 82-87.
- 2. Широкополосные малогабаритные антенны УКВ диапазона / [Киселев В.П., Сайко В.Г., Ильинов М.Д. и др.] // Зарубежная радиоэлектроника. 1990. № 2. С. 54-60.
- Мамедов Н.И. Рамочная антенна с двухточечным возбуждением / Н.И. Мамедов, М.Б. Проценко // Радиоэлектроника и молодежь в XXI веке: XI междунар. молодежного ф-м, 10-12 апр. 2007: тезисы докл. – Харьков, 2007 – С. 33.
- Карпов В.М. Широкополосные устройства СВЧ на элементах с сосредоточенными параметрами / Карпов В.М., Малышев В.А., Перевощиков И.В.; под ред. В.А. Малышева. – М.: Радио и связь, 1984. – 104 с.
- 5. *Авраменко В.Л.* Электрические линии задержки и фазовращатели: [справочник] / Авраменко В.Л., Галямичев Ю.П., Ланнэ А.А.; под ред. А.Ф. Белецкого. М.: Связь, 1973. 112 с.
- 6. *Кисель В.А.* Синтез корректирующих цепей: учебн. пособие / Кисель В.А. Одесса: Изд-во ОЭИС им. А.С. Попова, 1979. 71 с.
- 7. *Брук Ю.М.* Матричные схемы для многолучевых фазируемых антенн–решеток / Брук Ю.М., Инютин Г.А., Содин Л.Г. // Антенны: сб. статей; под ред. А.А. Пистолькорса. Вып. 20. М.: Связь, 1974. С.32 47.