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IN THE CASE OF THE MULTIDIMENSIONAL CIRCUITS 

 
ДІАГОНАЛІЗАЦІЯ МАТРИЦІ ОПЕРАТОРІВ  
ДИФЕРЕНЦІЮВАННЯ БАГАТОМІРНИХ КІЛ 

 
ДИАГОНАЛИЗАЦИЯ МАТРИЦЫ ОПЕРАТОРОВ  

ДИФФЕРЕНЦИРОВАНИЯ МНОГОМЕРНЫХ ЦЕПЕЙ 
 
Summary. In the present paper we propose the explicit mathematical method that is assumed to be 

quite simple from the engineering and applied aspects and that allows to diagonalize an n-dimensional 

system of the arbitrary partial differential operator equations over the space . All sought for scalar 

equations have an only one component of the unknown n-dimensional vector function  and are 

obtained by the application of the corresponding partial differential operators to the original system 
equations. These operators are the initial matrix elements and the only one requirement is their 
commutativity in pairs. 
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Анотація. В роботі пропонується гостро математичний та досить простий з інженерно-
прикладної точки зору конструктивний метод діагоналізації системи n-го порядку довільних 

диференціальних операторних рівнянь у часткових похідних над простором . Шукані скалярні 
рівняння , кожне з яких містить тільки одну компоненту невідомої  n-мірної вектор-функції 

, одержані послідовним застосуванням відповідних диференціальних операторів у 

часткових похідних – елементів вихідній матриці, до рівнянь первісної системи. При цьому єдиною 
вимогою для даних операторних матричних елементів являється їх комутативність парами. 
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Аннотация. В работе предлагается строго математический и достаточно простой с 
инженерно-прикладной точки зрения конструктивный метод диагонализации системы n-го порядка 
произвольных дифференциальных операторных уравнений в частных производных над 

пространством . Искомые скалярные уравнения, каждое из которых содержит ровно одну 

компоненту неизвестной n-мерной вектор-функции 
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
, получены последовательным 

применением соответствующих дифференциальных операторов в частных производных – элементов 
исходной матрицы, к уравнениям первоначальной системы. При этом единственным требованием 
для упомянутых операторных матричных элементов является их попарная коммутативность.  
   
 It is well known that the majority of real physical processes may be described either by the partial 
differential equations (PDEs) with the constant coefficients or by their systems. That is the main reason why 
even now the problem of the construction of the explicit and simple mathematical procedure for the solution 
of the various PDEs’ systems remains quite urgent in applied mathematics, physics and engineering [1 – 3]. 
The classical approach in this direction is the integral transformation method jointly with the generalized 
function theory [2, 4, 5]. In the mentioned case the investigator must choose the correct integral 
transformation not only from the mathematical point of view but also taking into account the physical 
statement of the original problem.   
 Systems of PDEs with the constant coefficients are broadly used in the multidimensional circuit 
theory (look, e. g. [6]). The interest to this topic has grown to a considerable extent due to the appearance of 
the multidimensional wave digital filters [7]. The multidimensional analogous circuits are used as the 
prototype during the above mentioned filters’ synthesis. Rather important results [8] were obtained in 
classical electrodynamics [9] because of some statements of the multidimensional analogous circuit theory. 
In this case Maxwell axioms were considered as the system of PDEs. In [10 – 12] the diagonalization 
problem was solved for the system of the differential Maxwell equations that was represented in various 
initial forms. Each diagonalization procedure of the original matrix was done by the consistent application of 
the appropriate operators to the equations of the initial system. The result of this procedure was the system of 
scalar equations and it was equivalent to the original one. The mentioned approach is the considerable 
simplification of the solution for the arbitrary system of PDEs, since this object is reduced to the equivalent 
one whose equations are scalar and depend on the only one component of the unknown vector function. 
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 Nevertheless, as far as it is known, the diagonalization problem of the PDEs’ system for the 
multidimensional circuits is not found yet in the general case. Therefore, the main purpose of the given paper 
is the construction of such diagonalization method that deals without the inverse matrix differential operator. 
 1. The problem statement. Turning towards the generalized functions’ method we may notice that 
this approach, though is very elegant mathematically, remains rather difficult for the nonmathematicians at 
the stage of its explicit realization. Thus, for example, in the monograph [2, p. 127 – 261], even in the simple 
case of the differential operator polynomials with constant coefficients 
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the solution of the following equation 
)...,,()...,,( 11 nn xxfxxPu         (2) 

is reduced to the expansion of operator P by its eigenfunctions; u and f  in formula (2) are the appropriate n-
dimensional unknown and given vector-functions that have continuous derivatives in some domain of the 

space nR . Such approach brings the operator P from (1) to the diagonalized form, i.e. the original equation 
(2) is also diagonalized. 

The principal obstacle of the applied character here is that again from the very beginning the 
investigator researcher has to deal with integral transformations which operate in various classes of the 
generalized functions, i.e.: basic, moderate and quickly increased. Hence, when an engineer even in the 
system diagonalization procedure uses the both of the recently mentioned methods, he must be very acute in 
all their mathematical details. Moreover, for every specific class of the systems these approaches are realized 
in their own way. 

With the problem of the PDEs first order systems’ solution over the space (x, y, z, t) the authors have 
come across when they studied the classical electrodynamical objects and Maxwell equations, — in 
particular. Thus, in [8] was shown that in the case of classical electrodynamics axiomatic construction for the 
linear homogeneous isotropic undisturbed media with the outside currents two main postulates as the 
following vector equations may be sufficiently accepted 
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where: ),,,( tzyxEE


 and ),,,( tzyxHH


 are the unknown vector-functions of the electric and 

magnetic field tension; differential operator t
0 ; the given vector-function ),,,(стст tzyxjj


  

describes the outside current sources; the positive constants  are the specific conductivity, absolute 

permeance and dielectric permeability correspondingly. 
aa ε,μσ,

Further, in [11] the vector system (3) was reduced to the equivalent system of six PDEs, and every 

equation had an only one unknown scalar vector component of 3
1}{  iiEE


 or 3

1}{  iiHH


. In other words, 

the original matrix system was diagonalized. This result was obtained by the consistent application of the 
corresponding differential operators to six original equations of system (3) that were written in terms of 

 and  respectively. 3
1}{  iiEE


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1}{  iiHH


In given paper we propose the generalization and analytical formalization of the previous results 

[10], [11] in the case of arbitrary n-dimensional differential operator equation systems over the space  mR
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where:  and 1( ,..., )mF F x x
 

1( ,..., )mf f x x
 

are the n-dimensional unknown and given vector-functions 

that are n · s  continuously differentiated in some domain of the space ; s  is equal to the maximum order 

of the higher operator  derivative for all 

mR

jiA nij, ,1 , and partial differential operators  are utterly 

arbitrary. The only requirement of the proposed diagonalization procedure is their commutativity in pairs 
jiA

),,1,,,( nlkijAAAA jiklklji         (5) 

where the consistent operator application is defined as usual from the right to the left, i.e. from the “inner” to 
the “external”. 
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We should remind now that the diagonalization of system (4) is treated here in the same meaning as 
earlier. The initial system is reduced to the equivalent one that consists of n scalar partial differential 

operator equations and each equation has an only one component 1( ,..., ) ( 1, )i i mF F x x i n   of the 

unknown vector-function F


. This result is also obtained by the consistent application of the appropriate 
partial differential operators to the original equations of system (4). 

The proposed procedure is generalized for matrices with the operator-block structure and is 
demonstrated in the case of Maxwell vector system (3). 

 
2. Reduction of the first initial system equation to a scalar one (”upward” diagonalization 

step). At the first diagonalization stage we raise a problem to obtain the scalar equation regarding one of the 

unknown components . Not breaking the common character of our results, we assume that the sought 

for component is F

n
iiF 1}{ 

1. 
Step 1. We separate the last equation of system (4) and isolate the item with scalar Fn in all n 

equations of the considered system: 
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Then we apply to the last equation of (6) the operator 

  )1,1(  njAjn      (6′) 

consistently for all j from (6′), and to the remained 1n  equations of the same system the following operator 
,nnA   (6′′) 

is applied. Afterwards we sum consistently the last transformed nth equation and the rest  transformed 

equations for all 

1n

1,1  nj . As the result we come to the system that is equivalent to (6), its equations from 

the first till the th have no anymore the scalar F)1( n n, and the nth equation is separate 
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Such separate equations that close the appropriate system at every diagonalization step further in this 
paper we shall call “the single equations”. 

Introducing the auxiliary notations for the given operators and functions 
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we consider now only the first  equations from (7), i.e. the subsystem of (7) that looks like 1n
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and that is the system (7) without its “single equation”. 
Step 2. In all  equations of (9) we isolate the item with the component , and the last system 

equation is written separately 
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Then we apply to the last equation of (10) the operator 

  )2,1()1(
1,   njB nj            (10′) 

consistently for all j from (10′), and to the remainded 2n  equations of (10) the operator 
)1(

1,1  nnB    (10′′) 

is applied. Afterwards we sum the transformed (n – 1)th equation and the rest transformed n – 2 equations in 

the consecutive order for all 2,1  nj . As the result we come to the system that is equivalent to (10), its 

equations from the first till the (n – 2)th do not contain now two scalar functions , and the (n – 1)th 

equation is ”single”: 
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Introducing the auxiliary notations for the corresponding operators and functions 
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we can rewrite now the system (11) without its ”single equation”: 
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Continuing the proposed procedure, at every consequent step we obtain the ”subsystem” of the 
concluding system from the previous algorithm stage, i.e. the former final system without its “single 
equation”. Each of these new studied objects has by one component  less than it had at the preceding step. 

It should be remembered here that since, at each step's closing the ”single equation” is rejected  hence, we 
can speak about the equivalence of the obtaining systems only within the limits of the certain algorithmic 
stage and only until the moment of temporary rejection of the corresponding ”single equation”. Anyhow, it is 
obvious and will be completely evident at the end of  the present part 2 that the sought for system which is 
equivalent to the initial system (4), will be obtained after the final step k = n – 1 by the attachment to the last 
concluding scalar equation all the preceding ”single” non-scalar ones that were rejected before. 
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and consider the general 

1,1for1Step  nkk . In all n – k equations of system (14) we isolate the item with the 

component , and the last equation of (14) is written separately: knF 
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Then we apply to the (n – k)th equation of (15) the following operator 

  )1,1()(
,   knjB k

knj    (15′) 

consistently for all j from (15′), and to the rest n – k  – 1 equations of the same system the operator 
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,
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knknB   (15′′) 
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is applied. Afterwards we sum in the consecutive order the (n – k)th transformed equation and the rest n – k –

 1 transformed equations from system (15) for all 1,1  knj . As the result we come to the following 
system 
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that is equivalent to (15). The first n – k – 1 equations of (16) contain only components )1,1(  kniFi  

and have no ),( nkniFi  . The (n – k)th equation of the system (16) is “single”. 

Introducing the auxiliary notations for the appropriate certain operators and functions 
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we can write the concluding system of the current step k + l, i.e. — (16) without its ”single” equation 
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The known operators B... and functions g... from (18) are defined by the formulae (8), (17). 
And at last the final 
Step k = n – 1 leads to the following: we substitute 211  nknk  to (17), (18) and as the 

result obtain the required scalar equation with the component F1 

,1,11
)1(

11 
  n

n gFB       (19) 

while the rest n – 1 nonscalar equations are ”single”. In (19) the corresponding given operator and function 
are described by the below written recurrent formulae that were obtained after the substitution of k = n – 2 
for (17): 
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Here it should be noted that in (17), (18), (20) as everywhere in the present part 2, the upper index in 
the round brackets of the known operator B... and the second lower index of the given function g... mean the 
step number of the diagonalization procedure in the “upward” direction. 

Also we have to notice that even at the current stage of the only one scalar equation’s construction 
we need extremely the operator commutativity in pairs (5). This evident fact follows directly from the 

realization of the proposed algorithm. It is quite enough to agree that at each kth step for all 1,1  nk  the 
corresponding operators are applied to the studied equations either only from the left or only from the right 
side during the whole ”upward” diagonalization process as it is done everywhere in the present part 2. 

At last, closing the part 2 which main purpose was attained in the formulae (19). (20), we can write 
below the final system of the diagonalization procedure in “upward” direction 
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where:  

,0when,),,1( 0
)0(  kfgniAB nnnini     (21′) 

are the known appropriate operators and functions from the last equation of the system (6) or (7). System 
(21), (*) is obtained by the attachment to the desired scalar equation (19) of all “single” equations that were 
rejected earlier. Therefore, the equivalence of (21), (*) to the initial system (4) ≡ (6) is obvious. 

Additionally, it should be noted that the arrow direction for the index k from formula (*) till the very 
end of the next part 3 will describe the backward counting, — from the right to the left. 

System (21), (*) represents the completion of the ”upward” diagonalization stage. 
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3. Construction of the rest scalar equations with the components )2( n,iFi   (diagonalization 

“from the top to the bottom”). Now we are going to propose the second diagonalization stage that works in 
the opposite downward direction, “from the top to the bottom”. 

Step 1 (k = n – 2). We isolate the first equation of the subsystem (*) and write it together with the 
obtained scalar equation (21) that has the component F1. At this moment we neglect the rest 

3,0  nk equations from (*) considering them as “single”: 
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nj
i

i
n

ji

n
n

     (22) 

In the last equation of (22) we separate the item with the scalar F2 

















2,22
)2(

221
)2(

21

1,11
)1(

11 ,

n
nn

n
n

gFBFB

gFB
     (23) 

apply to the second and first equations from (23) the appropriate operators 

,)1(
11

nB     (23′) 

 )2(
21

 nB        (23′′) 

and sum up the both transformed equations. 
Turning to the system (23), we may notice that after its recent transformation that dealt with the 

operators (23′), (23′′), we come to the following system 




















1,1
)2(

212,2
)1(

112
)2(

22
)1(

11

1,11
)1(

11 ,

n
n

n
nnn

n
n

gBgBFBB

gFB
      (24) 

which is equivalent to (23) and whose second equation is scalar with respect to the component F2. 
Introducing the auxiliary notation for the known function from the right part of the last equation in 

system (24)  

,11,1
)2(

212,2
)1(

11 hgBgB n
n

n
n  




      (25) 

we rewrite (24) as follows  















.

,

12
)2(

22
)1(

11

1,11
)1(

11

hFBB

gFB
nn

n
n

         (26) 

It is clear that after getting formulae (26), the subsystem (*) has lessened by one equation and looks 
like 

).3,0;,3(
1

)( 



nkknjgFB jk

kn

i
i

k
ji     (*1) 

Step 2 (k = n – 3). We isolate now the first equation from system (*1) and attach it to the concluding 
system of scalar equations (26) from the preceding step 1 






























3

1
3,

)3(

12
)2(

22
)1(

11

1,11
)1(

11

).3(

,

,

i
nji

n
ji

nn

n
n

jgFB

hFBB

gFB

     (27) 

The rest 4,0  nk  equations in (*1) are “single”. 
Then in the third equation of (27) we isolate the item with the scalar F2 
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




























2

1
3,33

)3(
33

)3(
3

12
)2(

22
)1(

11

1,11
)1(

11

.

,

,

i
n

n
i

n
i

nn

n
n

gFBFB

hFBB

gFB

        (28) 

Afterwards, we apply to the third, first and second equations of (28) the following operators correspondingly 

,)2(
22

)1(
11

 nn BB  (28′) 

 )2(
22

)3(
31

 nn BB  and  .)3(
32

 nB            (28′′) 

Summing up these three transformed equations we get the system 

 



























1
)3(

321,1
)2(

22
)3(

313,3
)2(

22
)1(

113
)3(

33
)2(

22
)1(

11

12
)2(

22
)1(

11

1,11
)1(

11

,

,

hBgBBgBBFBBB

hFBB

gFB

n
n

nn
n

nnnnn

nn

n
n

    (29) 

that is equivalent to (28) and has already the third required scalar equation with the component F3. 
Introducing the auxiliary notation for the known function from the right part of the last equation in 

system (29) 

  ,21
)3(

321,1
)2(

22
)3(

313,3
)2(

22
)1(

11 hhBgBBgBB n
n

nn
n

nn  





    (30) 

we rewrite (29) as follows 























.

,

,

23
)3(

33
)2(

22
)1(

11

12
)2(

22
)1(

11

1,11
)1(

11

hFBBB

hFBB

gFB

nnn

nn

n
n

              (31) 

Indices of the given functions h... from (25), (30) and everywhere in the present section 3 imply the step 
number of the second diagonalization stage “from the top to the bottom”. 

The subsystem (*1) decreases now by one equation more (the original subsystem (*) — respectively 
by two) and turns into the following 

).4,0;,4(
1

)( 



nkknjgFB jk

kn

i
i

k
ji         (*2) 

Further, the generalization of two preceding moments of the current diagonalization stage in the case 

of the arbitrary step )1,1(  nll  is considered. At first we rewrite the subsystem  of the previous 

step  

)(* 1l

1l

).1,0;,1(
1

)( 



lnkknljgFB jk

kn

i
i

k
ji           )(* 1l

When , the second equation in (22) corresponds to the ”zero” step. 1l
As it was done earlier in the section 3, we isolate the first equation in  and attach it to the 

concluding system of scalar equations from the preceding step 

)(* 1l

1l . Simultaneously, the remained 

2,0  lnk  equations in  are “single”. )(* 1l

The system which last equation will be reduced to a scalar one is obtained earlier and looks like 































1

1
1,

)1(

1

1
1,101

)(

).1(

),;1,0(

l

i
lnji

ln
ji

p

q
npp

qn
qq

ljgFB

ghlphFB

    (32) 

The symbol of the finite operator product in (32) and later in the present part 3 implies the usual consequent 
operator application from the inner to the external in “the right to the left” direction. 

Further, we separate in the  equation of (32) the item with the component F1)th( l l+1 
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





























l

i
lnli

ln
il

p

q
npp

qn
qq

gFB

ghlphFB

1
1,1

)1(
,1

1

1
1,101

)( ),;1,0(

         (33) 

and apply to the last equation from (33) the operator 





l

q

qn
qqB

1

)( .  (33′) 

To the remained equations in (33) from the first till the 1)th( l  we apply the appropriate operators 

)1,1(
1

)()1(
,1 








 




 lrBB

l

rq

qn
qq

ln
rl        (33′′) 

and the lth equation of the same system is transforme  by the operator d

 .)1(
,1


 ln
llB                                                             (33′′′) 

Then we sum up all these 1l  transformed equations and obtain the system 

















 




































l

rq
l

ln
,llr

qn
qq

l

q

l

)(l
r

ln
,rll,nl

qn
qq

l

q
l

qn
qq

p

q
,npp

qn
qq

hBhBBgBFB

ghl,phFB

1
1

)1(
11

)(

1

1

1
1

)1(
111

)(
1

1
1

)(

1

1
1101

)( ),;10(

     (34) 

that is equivalent to (33). In the case of  the second item in the right part of the last equation from (34) 
is assumed to be equal to zero. 

1l

Introducing the common notation for the known function from the right part of the last equation in 
(34) 

 


















 
l

rq
l

ln
,llr

qn
qq

l

q

l

)(l
r

ln
,rll,nl

qn
qql hBhBBgBh

1
1

)1(
11

)(

1

1

1
1

)1(
111

)(           (35) 

we can write the final system (34) of the arbitrary step )2,1(  nll  as follows 







 
1

1
1,101 );,0(

p

q
npp

q)(n
qq ghlphFB       (36) 

and the second item from the right part of (35) is equal to zero when 1l . 
The obtained recurrent formulae (35), (36) are easily verified, e.g. for the above mentioned steps 
. 21,l 
In should be noted that after the construction of (36) the subsystem decreases by one equation 

(the initial subsystem (*) — correspondingly by l) and turns into the following 

)(* 1l

).2,0;,2(
1





lnkknljgFB iki

kn

i

(k)
ji           )(*l

After continuation of the second diagonalization stage in the downward direction including the final step 

, we come to the sought for system of the scalar equations with all components 1 nl ),1( niFi  (look 

(36) when ): 1 nl







 
1

1
1,101 );1,0(

p

q
npp

q)(n
qq ghnphFB      (37) 

where the certain operators and functions are described by the formulae (17) and (35) from the parts 2 and 3 
correspondingly. 

When the explicit construction of the resulting system (37) is finished, we can assert that the 
subsystem of “single”equations  does not exist, since after completion of the preceding step )(*l 2 nl  

the subsystem  consisted of one equation )(*l
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

)0;,(
1





kknnjgFB iki

kn

i

(k)
ji

     

.0
1

)0(
ni

n

i
ni gFB 


  )(* 2n

In  the given operator B... and function g... are from the formulae (21′). The next final step )(* 2n 1 nl  

brings  to the sought for scalar equation with the component F)2(*n n. 

At the end of the present section 3 we must mark the equivalence of the wanted scalar equations’ 
system (37) and the initial system (21), (*). Therefore, the both mentioned systems are equivalent to the 
original system (4). This fact follows directly from the proposed diagonalization procedure and completes it. 
Thus, the existence of the initial operator system solution is proved in the diagonalization terms and the main 
purpose of the given paper is attained. 

 
4. Algorithm application to the matrix block operators in the case of the differential Maxwell  

system. From the previous parts 2, 3 we can easily conclude that the proposed diagonalization procedure is 

invariant concerning the matrix construction of the initial system (4), i.e. the operators ),1,( nijAji   which 

satisfy (5) may have the arbitrary block structure. In this case the original matrix is diagonalized at first, and 
its every block is considered as one operator. When the desired diagonalized block-matrix is formed, the 
consecutive diagonalization of each block follows and, as the result the sought for scalar equations are finally 
obtained. 

As the example we apply the proposed algorithm to the classical Maxwell system (3) that may be 
written in the following block way [8]: 

,
ст

ст

2

1





































e

j

H

E

I

I
           (38) 

where:  are from the part 1 and in our case . ст,, jHE 0
ст

e

I,μII,εσI, aa 0201

12

13

23

)(

0

0

0






















        (39) 

I is the 3-dimensional unit matrix; operator notations )3,1(  ii  











 zyx 321 ,,  and 

constants  remain the same as they are in the part 1. aa μ,εσ,
The diagonalization of the system (38) is done according to the procedure of the previous sections 2, 

3. From the very beginning we consider each block of (38) as one operator and write (38) in the equivalent 
form 















.

,
ст

ст

2

1

eHIE

jHEI
        (40) 

After application of the appropriate operators  

2I  and )(   

to the first and second equations of (40) respectively and summing up these transformed equations, we come 
to the system 

 













ст

стст

2

2
2

21 ,

eHIE

ejIEII
                  (41) 

that is equivalent to (40) and (38). The first equation in (41) has the only one unknown function E which is 
the vector one yet. Hence, we can assert that the final result of  the part 2 in block terms is obtained. 

Further, we propose the second stage of the described algorithm from the part 3. It means that the 
following operators 
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2
21 II  and   

are applied to the second and first equations of (41) respectively. Afterwards, these two transformed 
equations are summed up and the system which is equivalent to (41) is obtained 

 
    













.

,
стстст

стст

2
2

212
2

21

2
2

21

ejIeIIHIII

ejIEII

  

After obvious calculations the last system looks like  

 
  












стст

стст

122
2

21

2
2

21 ,

eIjIHIII

ejIEII

            (42) 

and its second equation has the only one function H that is also the vector one yet. Therefore, the final result 
of the part 3 in block terms is also obtained and the diagonalization process of system (3) at the vector level is 
finished. 

Now we begin the separate diagonalization procedure of the first and second vector equations from 

(42) with respect to the corresponding scalar components  3

1 iiEE  and  3

1 iiHH . 

From the very beginning we have to calculate the following operator block-matrices, taking into 
account notations (39) 

.)(, 00213

2
1

2
23231

32
2
1

2
321

3121
2
2

2
3

2 IεσμIII aa 






















        (43) 

Putting the below written expressions 

2
3

2
2

2
1

00
*
0 ),(






aa εσμ         (44) 

into the formulae (43), we get the operator matrices 

I.I, *


 






















 03

2
33221

32
2
221

3121
2
1

2

Δ

Δ

Δ

                (45) 

From (43) – (45) we conclude that 

.I

*

*

*






































Δ

Δ

Δ

2
303231

32
2
2021

3121
2
10

3
2             (46) 

Hence, the first block equation of (42) that is scalar with respect to the vector E, in its coordinate form may 
be written as: 

),3,1(
3

1




jfFA ji
i

ji             (47) 

where: 

,)3,1,(, ст
0  ijjμfEF jajii  

.)3,1,(when

,)3,1,(when

2*
0 




ijjiAA

ijjiAA

jiijj

ijijji

       (48) 
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Then we apply to (47) the first diagonalization stage from the section 2 and use the formulae (17), 

(19), (20) when 3;1,1  nnk . The last approach leads to the required scalar equation that has the first 

component of the unknown vector-function E : 
,121

)2(
11 gEB      (49) 

and  
.21

)1(
1211

)1(
2212 gBgBg          (49′) 

After application to (49′) the equality (8) from the part 2, we can rewrite the given operators and functions of 
formula (49′) as follows: 

.)2,1(

,)2,1,(

33331

3333
)1(





jfAfAg

ijAAAAB

jji

ijjiji
      (49′′) 

Since in the considered particular case the first diagonalization stage for E  and H  has only two steps, then 
for the left part of (49) it is sufficient to use the first equality (12) from the preceding section 2: 

.)1(
21

)1(
12

)1(
11

)1(
22

)2(
11 BBBBB          (49′′′) 

Taking into account formula (49′′) and symmetry of the operators  with respect to the main diagonal of jiA
the matrix (46), we can simplify the “right-side” operators from (49′′′) 

.

,)2,1(

32131233
)1(

12
)1(

21

)2(
333

)1(

AAAABB

ijAAAB jjjjj




 

Putting into the last formulae the operator explicit values from (48) and using evident identities 

)(),()()()()()()( 2*
0

*
0

22
3

*
0

2*
0

2
3

22*
0

2
3

*
0 jiijjj 



  

),()( *
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Then the right part of (49′′′) by means of (50) comes to its final operator expression 
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which after simple calculations 
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and the second notation of (44) may be written as follows 
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Further, we define the explicit construction of the function from formula (49′) Approaching this 

direction we substitute (49′′) for (49′) and after simple transformations using the operators’ ),1,( nijAji   

commutativity, can obtain 
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If we write the last formula in terms of (50), (48) 

)()()()(

))(()()()()(

ст

стст

3031
2
1

*
0

*
032

*
021

20
*
02110

2
1

*
0

*
0

2
3

*
012

)(

)(

jμ

jμjμg

a

aa








 

and transform it by the second equality of (44) 
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At last, putting (51), (52) into the left and right parts of (49) respectively we get 
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Neglecting the “common operator multiplier” 
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and taking into account the first equality (44), we can write the sought for scalar equation with respect to 

the component  of the initial vector-function 1E E  [10] 
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Further, we use the second diagonalization stage of the part 3 when p = 1, 2 in the formulae (37), (35). As the 
result we obtain the sought for scalar equations with the components  32 , EE
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where are defined by the corresponding formulae (51), (50) of the present section 4,  )2(
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is written according to (21′) from the part 2 and  is from the part 3. Taking into account (55) we can )(* 2n

write functions (35) as follows 
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Putting expressions (48) into (57), (58), due to the formulae (50), (51), (52), (49′′), (56) we can propose 
the sought for scalar equations (55) in the explicit form 
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where  is the right part of the first equation in (59). 1h
Further, we transform the right part  of the first equation from (59) as follows 1h

.)()()()()( )( стстст
2

2
2

2
1

2
3

*
0

*
033112

2
1

*
00

2
3

*
0

2*
01 )( jjjμh a 



 

After application to the last expression the operator identity  
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the known function  looks like 1h
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Putting (60) into the right part of the first equation in (59) and neglecting the “common operator multiplier” 
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we come to the final scalar equation with respect to the component  of the unknown vector-function 2E E  
[10] 
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Then we put (60) to the right part  of the second equation from (59): 2h
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and after simple operator calculations bring the last formula to the equivalent form 
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Application of the operator identity  
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to the formula (63) leads to the final representation of  the function   2h
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Putting (64) into the right part of the second equation from (59) and neglecting the “common 
operator multiplier” 
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we come to the unknown scalar equation with the last component  of the initial vector-function 3E E   [10] 
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Comparing the explicit final equations (54), (62) and (66), we can write the general scalar equation that has 

simultaneously all components )3,1( iEi of the initial vector-function E  which describes the electric 

field tension 
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Formula (67) coincides completely with the particular result of  [10]. 

Further, we diagonalize the second vector equation (42) that depends on the components  of the 3

1iiH

unknown vector-function H  which describes the magnetic field tension. Taking into account  [10] 0ст e
and neglecting the ”common operator multiplier”  we write the above mentioned equation in the 2I
equivalent form 

 

)69(),3,1(

)68(,

3

1

2
21

ст










jφHA

jHII

j
i

iji

  
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According to the formula (39). Thus, the systems (69), (47) are exactly identical in terms of the 

),3,1(  iFH ii  ),3,1(  jfφ jj  where the last functions are from the formula (70) and the previous 

ones are the vector components that describe the magnetic field tension. Hence, when the system (69) is 
diagonalized, we can use the preceding results that were obtained for (47). Namely, in the second expression 
of (49′′) for  the values   change correspondingly to 1jg ),2,1( jf j 3f 3),2,1( φjφ j   from (70): 
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After operators’ and functions’ substitutions from (48), (70) the last equality comes to 
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Therefore, the three unknown scalar equations for   1iiH 3
 have the left operator parts that are 

exactly identical to the appropriate parts of those scalar equations which are already obtained. Namely, the 
left parts of (49), (55) coincide with (51) and the left parts of (59) correspondingly 
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defined in (58) and (70). 
Now we can write the explicit expressions for the right parts of the desired scalar equations (72), 

(73), (74). These known functions are represented by the formulae (72′), (73′), (74′): 
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Further, we transform the above written expressions (72′′)  –  (74′′) and substitute them consistently for 
one into another in the “chain” order (72′′)  (73′′)  (74′′). Afterwards, we again transform (73′′) and  
(74′′) to the more compact forms, i.e.: at first we write 
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After application to the last formula the following expression 
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and according to (44)  turns into 12g
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Then we insert (75) into the right part of (73′′) and after obvious operator transition we obtain the explicit 
formula for  1h
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that according to (44) is equivalent to the following 
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At last, we substitute (75), (76) and  from the formula (70) for (74′′′): 3φ
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After evident calculations the last expression comes to 
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         (77) 

Then we insert (75) – (77) to the right parts of the corresponding equations (72) – (74) 
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and neglect the corresponding “common operator multipliers” 
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As the result we obtain the sought for scalar equations  
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    (79) 

with respect to the components   of the unknown vector-function 3

1iiH H  that describes the magnetic field 

tension.  
The above written equations (79) jointly with (67) complete the present part 4 and confirm the special 

results of paper [10]. 
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In the conclusion of given paper it should be noted that the proposed diagonalization procedure does 
not need any concrete initial and boundary conditions which become necessary only when the obtained scalar 
equations have to be solved, i.e. when the diagonalization algorithm is finished completely. Also we have to 
remind that the general approach from the parts 2, 3 does not require any additional conditions in the original 
system (4), except the operator commutativity in pairs (5). Besides, as we mentioned at the beginning of part 
4, the proposed method may be applied to the matrix operators of the arbitrary block structure. In this case we 
construct the diagonalized block matrix at first, then apply the diagonalization procedure from block-to-block 
consistently and from the external operator elements to the inner ones, until we obtain the unknown scalar 

equations with the components of the original vector-function F . 
In other words, the considered method does not depend neither on the operator matrix structure nor 

on the initial and boundary conditions of the studied problem (4). 
Our last remark concerns the investigated example from the part 4. It is easy to notice that the orders 

of scalar equations at the final diagonalization stage were essentially reduced when the corresponding 
“common operator multipliers” were neglected. Namely, — (53), (61), (65), (79) in the coordinate case (for 
the block stage it was (42)). After described operation we came to the equation that was equivalent to the 
preceding one, though the above proposed simplification way seemed formal from the first sight. In reality, 
neglect of the “common operator multiplier” completely coordinates with the given diagonalization algorithm. 
Really, when we applied to the both parts of the corresponding equation one and the same operator that was 
raised by the initial operators from (4) and then summed the transformed equations, we obtained the new system 
which was equivalent to the previous one. This system had one of the initial equations without recently applied 
operator and also the final equation, as the result of mentioned transformed equations’ addition. In other words, 
the proposed procedure in the given paper represents the operator analogue of the algebraic systems’ solution. 
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