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Summary. A technique of the linear invariants calculation for infinite Petri nets with the regular 

structure was presented and studied on the example of square communication grids of an arbitrary size. 
Linear systems of equations for the calculation of p-invariants and their solutions were constructed in 
parametrical form. The consistent firing sequence for proof of t-invariants was constructed, it contains all the 
transitions of the net on the base of the loop of the transmission graph which contains all its arcs. It was 
grounded that the compulsory buffering of the packets inevitably leads to possible blockings of 
communicating devices. The structure of complex deadlocks involving an arbitrary number of communicating 
devices caused by both the cycle of blockings and the isolation was studied.  

Анотація. Надано методику обчислення інваріантів для нескінченних сітей Петрі з 
регулярною структурою на прикладі квадратних комунікаційних ґраток довільного розміру. Системи 
лінійних алгебраїчних рівнянь для знаходження p-інваріантів і отримані розв’язки  подані у 
параметричному вигляді. Запропонована нова методика конструктивного доказу t-інваріантості на 
основі побудови базисних циклів спрацьовування переходів. Обґрунтовано, що примушена 
буферизація пакетів приводить до блокування телекомунікаційних пристроїв. Вивчено структуру 
складних тупиків, що містять довільну кількість комунікаційних пристроїв, зумовлених циклом 
блокувань та ізоляцією пристроїв. 

Аннотация. Представлена методика вычисления инвариантов для бесконечных сетей Петри 
с регулярной структурой на примере квадратных коммуникационных решеток произвольного размера. 
Системы линейных алгебраических уравнений для нахождения p-инвариантов и полученные решения 
представлены в параметрическом виде. Предложена новая методика конструктивного доказательства 
t-инвариантности на основе построения базисных циклов срабатывания переходов. Обосновано, что 
принудительная буферизация пакетов приводит к блокировке телекоммуникационных устройств. 
Изучена структура сложных тупиков, содержащих произвольное число коммуникационных устройств, 
вызванных циклом блокировок и изоляцией устройств.   

 
The problem of verification of grid structures with an arbitrary number of attached devices is 

prospect line of investigation. The Petri net application for the verification of telecommunication protocols is 
a rather traditional direction of research [1, 2]. The majority of known works study communication processes 
in pairs of communicating devices. But anomalies may occur which involve an arbitrary number of 
communicating devices and the present paper proves this statement.  

As the number of communicating devices and the structure of the network are varying considerably 
for real-life networks, a technique is required that could manage an arbitrary number of devices constituting 
an arbitrary structure. Recently the parametric composition of functional Petri nets [3] was applied for the 
analysis of infinite linear structures [4] of communicating devices. A simpler direct approach [5] was applied 
for treelike infinite structures but the solution for an arbitrary structure is not produced.  

The purpose of present work is analysis the square communication grids (matrix) infinite structure of 
communicating devices but it seems that the obtained results might be generalized for an arbitrary structure 
as well. 

 
1. The Models Construction. For the composition of infinite communication structures, submodels 

of a typical communication device and a terminal device are required. Further we compose such a regular 
communication structure as a square matrix of communicating devices of an arbitrary size. 

1.1. The Model of a Communication Device. Let us consider such real-life communication devices 
as switches and routers, for instance, Ethernet switches and IP/MPLS routers. Their basic function [6] is the 
redirection of the arrived packets to the destination port. So the model of a communication device consists of 
ports models. Usually each port works in the full-duplex mode that allows simultaneous transmission in both 
directions. This is provided by the different channels of the port: the input channel and the output channel. A 
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channel of a port has its internal buffer for the allocation of one packet. Moreover, the communication device 
uses an internal buffer with the limited capacity where it stores the packets before they are put into the 
destination port. The usage of the switching and routing tables is not modeled but the redirection function is 
represented by the allocation of the arrived packet for each possible destination. This abstract description 
suits the routers operation with the compulsory buffering of the packets and without the cut-through 
possibilities [6]. 

The constructed model of a communication device is represented in Fig. 1a. It has four ports for the 
further composition of the communication matrix but it might be constructed with an arbitrary number of 
ports as well. All the ports are situated on the sides of a square and are numbered clock-wise from 1 (the 
upper side) to 4 (the left side). A port consists of two channels: input (i) and output (o). Each channel is 
represented by a pair of places: one for the packet allocation and the other for modeling the port buffer 

capacity which is equal to 1. For instance, port 1 is modeled by the following places: ip1  – input buffer; ilp1  

– limitation of the input buffer capacity (equal to 1); op1  – output buffer; olp1  – limitation of the output 

buffer capacity (equal to 1). The internal buffer of the communication device is modeled by the separate 

places where the packets with the corresponding destinations are allocated: 1pb , 2pb , 3pb , 4pb . For 

instance, place 1pb  stores the packets redirected to port 1. Moreover, the capacity of the internal buffer is 

modeled by place pbl . The operation of the port output channel is represented by the only transition ot * , 

for instance, ot1  for port 1. The transition checks the availability of the port buffer olp1 , gets a packet from 

the corresponding place 1pb , puts the packet into the port output buffer op1  and increases the capacity of 

the internal buffer pbl . The operation of the port input channel is more sophisticated because it models the 

process of the destination choice. For each port it is modeled by three transitions (3 = 4 – 1). For instance, 

21it , 31it , 41it  for port 1. Transition 21it  allocates the packets redirected from port 1 to port 2 into the 

internal buffer place 2pb  and so on.  

Notice that the constructed model constitutes a definite balance between the complexity of real-life 
devices and the possibilities for formal analysis. At least, the essential features [6] are modeled: redirection 
of the packets and their intermediate allocation into the internal buffer with the limited capacity.  

1.2. The Model of a Communication Structure. The matrix (two dimensions) structure of 
communication devices is studied in the present paper. As the real-life communication structure may consist 
of an arbitrary number of communication devices, special methods should be developed that handle the 
infinite number of communication devices. Furthermore, it will be shown that the communication structure 
brings us anomalies which can not be found during the traditional study of communication processes in pairs 
of devices [1,2]. The results are obtained for the regular structures such as the matrix but it seems they might 
be generalized on arbitrary structures. 

Notice that the constructed model n2s1 is a functional Petri net [3]. Let us construct a 
communication structure via the composition of communication device models situated in the cells of a 

matrix. Square matrices of the size k  are studied, where k  is an arbitrary natural number. So each device 
jiR ,  in the matrix is defined by two indices: i  – for vertical direction and j  – for horizontal, ki ,1 , kj ,1 . 

The matrix communication structure is represented in Fig. 1b.  
The connection of communication devices is provided by the fusion (union) of corresponding contact 

places. For instance, for an internal communication device jiR , , 1,2  ki , 1,2  kj , the places of port 1 

are fused with the corresponding places of port 3 for the device jiR ,1  in such a way that place ji
op
,

1  is fused 

with ji
ip

,1
3
 , place ji

olp
,

1  – with ji
ilp

,1
3
 , place ji

ip
,

1  – with ji
op

,1
3
 , place ji

ilp
,

1  – with ji
olp

,1
3
 . So the full-duplex 

mode of communication via two channels of the ports is modeled. The rules of device jiR ,  connection may 

be formulated in the following way: the upper side – port 1 to port 3, device ),1( ji  ; the right side – port 2 

to port 4, device )1,( ji ; the bottom side – port 3 to port 1, device ),1( ji  ; the left side – port 4 to port 1, 

device )1,( ji . After the composition, the contact places have duplicate names. To avoid duplicity, the 

names of the places for the ports 1, 4 (the upper and left sides) will be considered with respect to the current 
device, for the ports 2, 3 – with respect to the neighbor devices and their ports 1, 4 correspondingly.  So the 
names of the fusion places have only the prefixes of the ports 1, 4. Moreover, to simplify further notations, 
the places of the right and bottom borders of the matrix are named with respect to non existing devices with 

the indices equaling to 1k . So the numbers of the ports 2 and 3 do not appear in the matrix. An example of 

the communication matrix (with attached terminal devices) for 2k  is represented in Fig. 3. 
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a) Model of cell (n2s1) b) Grid composition (n2sk) 

Figure 1 – Model of square grid communication structure 

 

1.3. The Models of Terminal Devices. The communication devices may be attached to each other 

constituting a communication structure but they are created only for the packets transmission among the 

terminal devices: workstations and servers. In the present work, the client-server technique of 

interconnection is not studied, so the types of terminal devices are not distinguished as in [7]. An abstract 

terminal device provides at least two basic functions: send packet and receive packet. These basic functions 

are provided by the models represented in Fig. 2.  

 

  
a) a simple reflection of packets (n0f) b) with the buffer of the packets (nf) 

Figure 2 – Petri net models of a terminal device 

 

The Fig. 2,a gives the simplest model that only reflects the arrived packets from the input to the 

output via transition utf  ; names of the places are given with respect to the places of a communication 

device port. So the model of a terminal device may be attached by the fusion of the places with the same 

names. The model in Fig. 2,b contains an internal buffer of the packets upf  ; transition utfi  models the 

input of the packets, while transition utfo  models the output. The suffix u  means the upper row of 

terminal devices that supposes port 1 for attachment; the left, right and bottom (down) rows contains the 

suffices l , r , d  correspondingly. An example of the communication matrix with attached terminal 

devices (type a) is represented in Fig. 3. 

 

2. Calculating p-invariants. The described composition of the model allows the application of the 

technique for Petri net analysis via the composition of its functional subnets [3]. This approach was applied 

for the Ethernet protocols with the bus structure verification for an arbitrary number of devices on the bus 

(line structure) [4]. But it brings us the explosion of solutions basis for the composition system and hinders 

the application of this technique.  A rather simple technique of the direct construction of an infinite linear 

system for p- and t-invariants applied for the switched Ethernet protocols verification (binary tree structure) 

[5] seems more adequate. 

The following infinite linear system of equation is constructed for p-invariants calculation of Petri 

net n2sk (Fig. 1b) – the matrix of k  devices n2s1 (Fig. 1,a), where k  is an arbitrary natural number: 
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(1) 

Notice that the standard technique of invariants calculation [8] is applied directly to the infinite Petri 
net. In the system for p-invariants calculation each equation corresponds to a transition; the sums of variables 
for the input and output places are equal. It is easy to check that each transition of the net n2dk was 
considered in the system (1). 

 

 

Figure 3 – Petri net model of a grid with attached terminal devices for 2k (nf2s2) 

 
The first 4 equations correspond to the transitions of ports 1, the next 4 – to the transitions of ports 4. 

They use variables of the places with the indices of the current device ),( ji , according to the naming rules. 

The next 4 equations describe the transitions of ports 2; the last 4 equations – the transitions of ports 3. They 

use the variables of ports 1, 4 places with the indices of the neighbor device ),1( ji  , )1,( ji  

correspondingly, instead of ports 3, 2 places with the indices of the current device ),( ji , according to the 

naming rules. Let us count the number of the equations and variables in the system (1). The total number of 

equations (transitions): 22 16 kN tn
k  . The total number of variables (places): kkN

pn
k  813 22 . 

The universal methods for the infinite systems of the linear equations under the rings (integer 
numbers) solving, especially into semigroups (nonnegative integer numbers) are unknown. We applied a 
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heuristic method of a general solution construction in the parametric form. The general solution of the 
system (1) may be represented as: 
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 (2) 

The way of the solutions description is common enough for sparse vectors and especially for the 
Petri net theory. Only nonzero components are mentioned by the name of a corresponding place. The 

nonzero multiplier 1 is omitted; in case it is not the unit, the notation xp*  is used where x  is the value of 

the invariant for place p . Such notation is adopted in the Tina software [9] which was used for obtaining the 

Petri net figures in this paper. A line of the matrix (2) gives us a set of lines according to the used indices i  

and j  except the last two lines which contain variable number of components given by indices. The total 

number of solutions is 245 22  kkN pinvn

k . 

We did not manage to prove that the matrix (2) is the basis of nonzero solutions of the system (1) but 
it is possible to ground that each line of (2) is a solution of (1). And this fact allows the proof of p-invariance 
for the net n2sk.  

Lemma 1. Each line of the matrix (2) is a solution of the system (1). 
Proof. Let us substitute each parametric line of (2) into each parametric equation of the system (1). It 

gives us the correct statement. For instance, let us substitute the first line of (2) 
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We obtain: 

– when ii   or jj  : 0 + 0 = 0 + 0 and further 0 = 0; 

– when ii   and jj  : 1 + 0 = 1 + 0 and further 1 = 1. 

In the same way all the 16x7 combinations may be checked.  

Theorem 1. The net n2sk is a p-invariant Petri net for an arbitrary natural number k . 

Proof. Let us consider the sum of the sixth and seventh lines of the matrix (2) which represents the 
solutions of the system (1) according to Lemma 1: 
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 (3) 

As all the kkN pn

k  813 22
 places are mentioned in this invariant, the Petri net n2sk is a  

p-invariant net for an arbitrary natural number k . Moreover, as each component of (3) equals to the unit, the 

net n2sk is a safe and bounded Petri net for an arbitrary natural number k .  
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As the p-invariance was proven for an arbitrary natural number k  we say that the invariants of 

infinite Petri nets with the regular structure were studied.  
The proof that (2) is a basis of the system (1) solutions is appreciated. But this fact was only 

grounded by the calculation experiments for the sequence 10,..,1k . Solutions given by (2) were compared 

with the basis obtained via the Adriana software [10] for the matrix structure with definite k .  

 
3. T-invariants and Deadlocks Structure. For the calculation of t-invariants the same approach 

may be applied. It gains that the Petri net n2sk is not t-invariant, but it is not a surprise because the modeled 
system is open as the terminal devices are not attached. The simplest way to prove it, is the consideration of 
the border places without the input arcs (places without the output arcs as well). So let us consider the net 
nf2sk which is obtained of the net n2sk by attaching the terminal devices nf represented in Fig. 2,b.  

But due to the explosion of the basis even for a small enough 3k , the general parametric solution 

was not constructed. This fact may be easily grounded by the consideration of all the consistent firing 
sequences of transitions. At first we prove that the net nf2sk is t-invariant. For this purpose the consistent 
firing sequence that contains all the transitions is constructed. We create a transmission graph of the 
communication matrix. The graph is composed of the cells corresponding to the devices. The cells have the 
form shown in Fig. 4. 

Each arc of the graph corresponds to firing a pair of transitions supplying the movement of a packet 

to the corresponding port. For instance, the arc )4,1( opip  represents the sequence otit 4,41  and so on. For the 

graph shown in Fig. 4,b the following loop may be constructed, which contains all the arcs: 
p1i, p2o, p2i, p4o, p4i, p3o, p3i, p1o, p1i, p4o, p4i, p2o, p2i, p3o, p3i, p4o, p4i, p1o, p1i, p3o, p3i, 

p2o, p2i, p1o. 
This loop corresponds to the following firing sequence of transitions 
t1i2, t2o, tfi-r, tfo-r, t2i4, t4o, tfi-l, tfo-l, t4i3, t3o, tfi-d, tfo-d, t3i1, t1o, tfi-u, tfo-u, t1i4, t4o, tfi-l, tfo-l, 
t4i2, t2o, tfi-r, tfo-r, t2i3, t3o, tfi-d, tfo-d, t3i4, t4o, tfi-l, tfo-l ,t4i1, t1o, tfi-u, tfo-u, t1i3, t3o, tfi-d, tfo-d, 
t3i2, t2o, tfi-r, tfo-r, t2i1, t1o, tfi-u, tfo-u, 
which contains each transition at least once. So the net nf2s1 is a t-invariant and, moreover, 

consistent Petri net. 

 

p1i p1o 

p2i 

p2o 

p3i p3o 

p4o 

p4i 

  

p1i p1o 

p2i 

p2o 

p3i p3o 

p4o 

p4i 

 
a) without terminal devices (n2s1) b) with attached terminal devices (nf2s1) 

Figure 4 – The transmission graph of a communication device 
 

The cells are gathered into the matrix and supplied with the arcs which correspond to the actions of 

terminal devices for the net nf2sk. An example of the graph for 2k  is represented in Fig. 5,a. 

Theorem 2. The net nf2sk is a t-invariant Petri net for an arbitrary natural number k . 

Proof. We prove the theorem in a constructive way using the structure of the transmission graph for 
the net nf2sk. We construct the consistent firing sequence that contains all the transitions of the net on the 
base of the loop of the transmission graph which contains all its arcs. Let us construct the main loop as the 
composition of loops on the following directions: horizontal, vertical, primary diagonal, collateral diagonal: 

1) horizontal loops: 
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2) vertical loops: 
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3) primary diagonal loops: 
3.1) left-bottom triangle: 
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3.2) right-upper triangle: 

( ),,1,,( ,1

1

,

4

,

4

1,

1 vkupppp uvu

i

uvu

i

uvu

i

uvu

i  
; 

1,1

4

,1

1

  kvk

i

kvk

i pp ; 
1,1

4

1,1

4

  kvk

o

kvk

i pp ; 

kvk

o

kvk

o pp ,1

1

1,1

4

  ;  )1,,,( 1,

1

,

4

,

4

,1

1 vkupppp uvu

o

uvu

o

uvu

o

uvu

o  
; 

v

i

v

o pp ,1

1

,1

1  ), kv ,1 ; 

4) collateral diagonal loops: 
4.1) left-upper triangle: 
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4.2) right-bottom triangle: 
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On the described loops, firing sequences of transitions may be unambiguously constructed. For 
instance, the loops for the right-bottom triangle have the following form: 
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It is easy to check that the sum of all the firing sequences corresponding to the described loops 
contains each transition of the net nf2sk at least once and preserves the initial marking. So the net nf2sk is a  

t-invariant and, moreover, consistent Petri net for an arbitrary natural number k .  

In spite of the fact that the Petri net nf2sk is t-invariant and provides the transmission of packets 
among each pair of terminal devices with redundancy, it contains deadlocks. Deadlocks may occur in the 
pairs of communication devices but we are more interested in complex deadlocks involving an arbitrary 
number of communication devices.  

Each pair of neighbor communication devices may fall into a local deadlock, for instance, when the 

device 
jiR ,
 got l  packets directed to the device 

1, jiR  and the device 
1, jiR  got l  packets directed to the 

device 
jiR ,
 and, moreover, the input and output buffers of their common port are occupied with the packets. 

Such a situation constitutes a t-dead marking for the transitions of both devices while other transitions of the 
net nf2sk are potentially live.  

In Fig. 3 the full deadlock for the net nf2s2 is shown. It involves all the four communication devices 
of the matrix.  

For the description of the deadlocks structures of the net nf2sk, the graph of possible blockings 
shown in Fig. 5,b is constructed.  
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a) The transmission graph b) The graph of possible blockings 

Figure 5 – Auxiliary graphs (examples for the net nf2sk) 
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The directed loops of the graph (Fig. 5,b) correspond to the deadlocks of the communication matrix 

nf2sk. Each arc connecting a pair of neighbor devices jiR , , jiR
, , 11  jjii  means that jiR ,  may 

block itself iff it got l  packets directed to jiR
, , its output buffer of the port connecting jiR ,  with jiR

,  

contains a packet and the device jiR
,  is also blocked. We may construct a simple chain of arcs and the real 

deadlock occurs when it is closed in a loop. So deadlocks of the communication matrix may be described as 

loops of the graph of possible deadlocks. A full deadlock involving all the devices (and all the transitions) 

occurs when the loop contains all the devices in the matrix. Let us notice that it requires at least 2)1( kl   

packets which should be provided by the terminal devices. Such a deadlock may be easily constructed for an 

even k  using, for instance, the detours of the graph shown in Fig. 6,a. 

 

    
a) For an even k  b) For odd 7k  

Figure 6 – The detours of the graphs of possible blockings 

 

For an odd k , the loop may contain only 12 k  devices but in this case we could make one device 

isolated by the loop that yields to the full deadlock. So the structure of the deadlocks is more complicated 

because, besides the deadlock caused by a cycle of blockings, isolated communication devices may occur 

with all the four neighbors belonging to the cycle. This case is rather simple for 3k  and illustrated with a 

full deadlock instance for 7k  shown in Fig. 6,b. 

In spite of the fact that rather sophisticated square communication matrices were studied, the 

described deadlocks in the cycles of blockings and isolations are hard-nosed for real-life communication 

graphs where devices with the compulsory buffering are used. We believe that these deadlocks may be 

purposely inflicted by the specially situated generators of the peculiar traffic. In real-life networks, the 

blocking of the devices is overcome with the time-out mechanisms causing the cleaning of the buffers but it 

leads to a considerable fall of network performance as soon as the situation is repeated by the special 

generators of perilous traffic. 

Thus, in the present paper, the technique of the linear invariants calculation for infinite Petri nets 

with the regular structure was presented. The technique was studied on the example of a communication 

matrix of an arbitrary size but it seems that the obtained results might be generalized for an arbitrary 

structure as well. 

The application of the technique allowed the verification of the telecommunication protocols, 

involving an arbitrary number of communicating devices. The modeled telecommunication device 

constitutes a generalized router/switch with the compulsory buffering of the packets. Such positive properties 

of the communication structure as safeness and consistency were obtained using the linear invariants of 

infinite Petri nets. 

It was grounded that the compulsory buffering of the packets inevitably leads to possible blockings 

of communicating devices. The structure of the complex deadlocks involving an arbitrary number of 

communicating devices caused by both the cycle of blockings and the isolation was studied.  

Though in real-life networks the deadlocks are overcome by the cleaning of the buffers via the time-

out mechanism, it leads to a considerable decrease of the network performance and moreover might be 

inflicted by the ill-intentioned traffic. 
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