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ANALYSIS OF SQUARE COMMUNICATION GRIDS VIA INFINITE PETRI NETS”
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AHAJIN3 KBAJIPATHBIX KOMMYHUKAIIMOHHBIX PEHIETOK
BECKOHEYHBIMMU CETAMMU NIETPU

Summary. A technique of the linear invariants calculation for infinite Petri nets with the regular
structure was presented and studied on the example of square communication grids of an arbitrary size.
Linear systems of equations for the calculation of p-invariants and their solutions were constructed in
parametrical form. The consistent firing sequence for proof of t-invariants was constructed, it contains all the
transitions of the net on the base of the loop of the transmission graph which contains all its arcs. It was
grounded that the compulsory buffering of the packets inevitably leads to possible blockings of
communicating devices. The structure of complex deadlocks involving an arbitrary number of communicating
devices caused by both the cycle of blockings and the isolation was studied.

AHOomauiss. HapgaHo MeToauKky OO4YMCNEeHHsA iHBapiaHTIiB AN HeckiHdeHHux citen [letpi 3
PErynsipHO0 CTPYKTYPOK Ha NpuUKNagi KBaapaTHUX KOMYHiKauilHUX rpaTok AoBinNbHoro po3mipy. Cuctemu
NiHiNHMX anrebpaiyHuxX piBHAHb AMNS 3HAXOMKEHHS p-iHBapiaHTiB | OTpUMaHi pO3B’A3KM  nojaHi vy
napameTpuMyHOMYy BuUrnsdi. 3anpornoHoBaHa HOBa MeTOOMKa KOHCTPYKTMBHOINO [oKasy t-iHBapiaHTOCTi Ha
OocHOBi MoGynoBM 6asucHUX UUMKMIB CcrpauboBYyBaHHs nepexofiB. OOrpyHTOBaHO, WO MpuUMyLLEeHa
Oydepusauis nakeTiB NpuUBOANTL A0 ONIOKYBaHHSA TeNEKOMYHIKaUiMHMX NpuUcTpoiB. BuBYeHO CTpyKTypy
CKMagHMX TYNWUKIB, WO MICTSATb [OOBIMbHY KiMbKiCTb KOMYHIKaUiIHUX NPUCTPOIB, 3YMOBMNEHUX LIMKITOM
6GroKyBaHb Ta i30M5Li€l0 NPUCTPOIB.

AHHOmMauus. MNpegcraBneHa MeToauka BblMUCNEHMS MHBAPUAHTOB ANnsa 6eckoHeuvHbIx ceTen [eTpu
C perynsipHol CTPYKTYpOl Ha npuMepe KBagpaTHbIX KOMMYHMKALMOHHBLIX PELUETOK NPON3BOSIBHOMO pa3mepa.
CuncTeMbl NMMHENHBIX anrebpanyeckmx ypaBHEHUI ANst HAXOXAEHWUS] P-MHBAPWAHTOB Y MOJTyYEHHbIE PeLLEHNS
npeacTaBneHbl B napaMmeTpudeckom Buae. [NpegnoxeHa HoBas MeToAMKa KOHCTPYKTUBHOMO JoKa3aTenbCcTBa
t-MHBapMaHTHOCTN Ha OCHOBE MOCTPOeHUs H6as3nCHbIX LUKNOB cpabaTbiBaHmsa nepexogoB. O60CHOBaHO, YTO
npuHyguTenbHas Oydepusauma nakeToB NPUBOAUT K ONOKMPOBKE TENEKOMMYHUKALMOHHBLIX YCTPOWCTB.
M3yyeHa CTpyKTypa CNOXHbIX TYMMKOB, CoAepXallux Npou3BoSIbHOE YUCIIO KOMMYHMKALIMOHHBLIX YCTPOWCTB,
BbI3BAHHbIX LIMKNOM OMOKMPOBOK U N30MALNE YCTPONCTB.

The problem of verification of grid structures with an arbitrary number of attached devices is
prospect line of investigation. The Petri net application for the verification of telecommunication protocols is
a rather traditional direction of research [1, 2]. The majority of known works study communication processes
in pairs of communicating devices. But anomalies may occur which involve an arbitrary number of
communicating devices and the present paper proves this statement.

As the number of communicating devices and the structure of the network are varying considerably
for real-life networks, a technique is required that could manage an arbitrary number of devices constituting
an arbitrary structure. Recently the parametric composition of functional Petri nets [3] was applied for the
analysis of infinite linear structures [4] of communicating devices. A simpler direct approach [5] was applied
for treelike infinite structures but the solution for an arbitrary structure is not produced.

The purpose of present work is analysis the square communication grids (matrix) infinite structure of
communicating devices but it seems that the obtained results might be generalized for an arbitrary structure
as well.

1. The Models Construction. For the composition of infinite communication structures, submodels
of a typical communication device and a terminal device are required. Further we compose such a regular
communication structure as a square matrix of communicating devices of an arbitrary size.

1.1. The Model of a Communication Device. Let us consider such real-life communication devices
as switches and routers, for instance, Ethernet switches and IP/MPLS routers. Their basic function [6] is the
redirection of the arrived packets to the destination port. So the model of a communication device consists of
ports models. Usually each port works in the full-duplex mode that allows simultaneous transmission in both
directions. This is provided by the different channels of the port: the input channel and the output channel. A
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channel of a port has its internal buffer for the allocation of one packet. Moreover, the communication device
uses an internal buffer with the limited capacity where it stores the packets before they are put into the
destination port. The usage of the switching and routing tables is not modeled but the redirection function is
represented by the allocation of the arrived packet for each possible destination. This abstract description
suits the routers operation with the compulsory buffering of the packets and without the cut-through
possibilities [6].

The constructed model of a communication device is represented in Fig. 1a. It has four ports for the
further composition of the communication matrix but it might be constructed with an arbitrary number of
ports as well. All the ports are situated on the sides of a square and are numbered clock-wise from 1 (the
upper side) to 4 (the left side). A port consists of two channels: input (i) and output (0). Each channel is
represented by a pair of places: one for the packet allocation and the other for modeling the port buffer
capacity which is equal to 1. For instance, port 1 is modeled by the following places: pli — input buffer; piil

— limitation of the input buffer capacity (equal to 1); plo — output buffer; plol — limitation of the output

buffer capacity (equal to 1). The internal buffer of the communication device is modeled by the separate
places where the packets with the corresponding destinations are allocated: pbl, pb2, pb3, pb4. For

instance, place pbl stores the packets redirected to port 1. Moreover, the capacity of the internal buffer is
modeled by place pbl . The operation of the port output channel is represented by the only transition t*o,
for instance, tlo for port 1. The transition checks the availability of the port buffer plol, gets a packet from
the corresponding place pbl, puts the packet into the port output buffer plo and increases the capacity of
the internal buffer pbl . The operation of the port input channel is more sophisticated because it models the

process of the destination choice. For each port it is modeled by three transitions (3 = 4 — 1). For instance,
t1i2, t1i3, tli4 for port 1. Transition tli2 allocates the packets redirected from port 1 to port 2 into the
internal buffer place pb2 and so on.

Notice that the constructed model constitutes a definite balance between the complexity of real-life
devices and the possibilities for formal analysis. At least, the essential features [6] are modeled: redirection
of the packets and their intermediate allocation into the internal buffer with the limited capacity.

1.2. The Model of a Communication Structure. The matrix (two dimensions) structure of
communication devices is studied in the present paper. As the real-life communication structure may consist
of an arbitrary number of communication devices, special methods should be developed that handle the
infinite number of communication devices. Furthermore, it will be shown that the communication structure
brings us anomalies which can not be found during the traditional study of communication processes in pairs
of devices [1,2]. The results are obtained for the regular structures such as the matrix but it seems they might
be generalized on arbitrary structures.

Notice that the constructed model n2sl is a functional Petri net [3]. Let us construct a
communication structure via the composition of communication device models situated in the cells of a
matrix. Square matrices of the size k are studied, where k is an arbitrary natural number. So each device

R"1 in the matrix is defined by two indices: i — for vertical direction and j — for horizontal, i=1k, j=1k.

The matrix communication structure is represented in Fig. 1b.
The connection of communication devices is provided by the fusion (union) of corresponding contact

places. For instance, for an internal communication device R/, i=2,k-1, j=2k-1, the places of port 1

are fused with the corresponding places of port 3 for the device R'>! in such a way that place p}; is fused
with pytd, place pjd —with pitt, place pji! —with pi™7, place pli} —with pii-. So the full-duplex
mode of communication via two channels of the ports is modeled. The rules of device R} connection may
be formulated in the following way: the upper side — port 1 to port 3, device (i—1, j); the right side — port 2
to port 4, device (i, j+1); the bottom side — port 3 to port 1, device (i+1, j); the left side — port 4 to port 1,
device (i, j—1). After the composition, the contact places have duplicate names. To avoid duplicity, the
names of the places for the ports 1, 4 (the upper and left sides) will be considered with respect to the current
device, for the ports 2, 3 — with respect to the neighbor devices and their ports 1, 4 correspondingly. So the
names of the fusion places have only the prefixes of the ports 1, 4. Moreover, to simplify further notations,
the places of the right and bottom borders of the matrix are named with respect to non existing devices with
the indices equaling to k +1. So the numbers of the ports 2 and 3 do not appear in the matrix. An example of
the communication matrix (with attached terminal devices) for k =2 is represented in Fig. 3.
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a) Model of cell (n2s1) b) Grid composition (n2sk)

Figure 1 — Model of square grid communication structure

1.3. The Models of Terminal Devices. The communication devices may be attached to each other
constituting a communication structure but they are created only for the packets transmission among the
terminal devices: workstations and servers. In the present work, the client-server technique of
interconnection is not studied, so the types of terminal devices are not distinguished as in [7]. An abstract
terminal device provides at least two basic functions: send packet and receive packet. These basic functions
are provided by the models represented in Fig. 2.

a) a simple reflection of packets (n0f) b) with the buffer of the packets (nf)
Figure 2 — Petri net models of a terminal device

The Fig. 2,a gives the simplest model that only reflects the arrived packets from the input to the
output via transition tf —u; names of the places are given with respect to the places of a communication

device port. So the model of a terminal device may be attached by the fusion of the places with the same
names. The model in Fig. 2,b contains an internal buffer of the packets pf —u; transition tfi—u models the

input of the packets, while transition tfo—u models the output. The suffix —u means the upper row of

terminal devices that supposes port 1 for attachment; the left, right and bottom (down) rows contains the
suffices -1, -r, —d correspondingly. An example of the communication matrix with attached terminal
devices (type a) is represented in Fig. 3.

2. Calculating p-invariants. The described composition of the model allows the application of the
technique for Petri net analysis via the composition of its functional subnets [3]. This approach was applied
for the Ethernet protocols with the bus structure verification for an arbitrary number of devices on the bus
(line structure) [4]. But it brings us the explosion of solutions basis for the composition system and hinders
the application of this technique. A rather simple technique of the direct construction of an infinite linear
system for p- and t-invariants applied for the switched Ethernet protocols verification (binary tree structure)
[5] seems more adequate.

The following infinite linear system of equation is constructed for p-invariants calculation of Petri
net n2sk (Fig. 1b) — the matrix of k devices n2sl (Fig. 1,a), where k is an arbitrary natural number:
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Notice that the standard technique of invariants calculation [8] is applied directly to the infinite Petri
net. In the system for p-invariants calculation each equation corresponds to a transition; the sums of variables
for the input and output places are equal. It is easy to check that each transition of the net n2dk was

considered in the system (1).

Figure 3 — Petri net model of a grid with attached terminal devices for k =2 (nf2s2)

The first 4 equations correspond to the transitions of ports 1, the next 4 — to the transitions of ports 4.
They use variables of the places with the indices of the current device (i, j), according to the naming rules.

The next 4 equations describe the transitions of ports 2; the last 4 equations — the transitions of ports 3. They
use the variables of ports 1, 4 places with the indices of the neighbor device (i+1j), (i,j+1)

correspondingly, instead of ports 3, 2 places with the indices of the current device (i, j), according to the
naming rules. Let us count the number of the equations and variables in the system (1). The total number of
equations (transitions): N =16-k?. The total number of variables (places): NJ?P =13-k?+8-k .

The universal methods for the infinite systems of the linear equations under the rings (integer
numbers) solving, especially into semigroups (nonnegative integer numbers) are unknown. We applied a
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heuristic method of a general solution construction in the parametric form. The general solution of the
system (1) may be represented as:

(plllplll) |_1k J=1Lk+1
(p, p), =Lk, j=Lk+1,
(P4 pid), i=1k+1 j=Lk;
(pzlloj’p4ol i:11k+11 J:ﬁa
(pm,péz‘_,_p.Ls"_,_pé'i_,_pé‘H_), i=Lk, j=1k, 0
(((psi’ s Py sy Pag s Pyt Poa s Po3 s Pyd ), E=1K,  j=1K),

o (eapa™) =1k ((RE PR, 1=1K)
((psit Pl Pid L pid ped), i=1k, j=1Kk),

Pz pi™), i=1k), ((p™, pg™?), §=1K))

The way of the solutions description is common enough for sparse vectors and especially for the
Petri net theory. Only nonzero components are mentioned by the name of a corresponding place. The
nonzero multiplier 1 is omitted; in case it is not the unit, the notation p*x is used where x is the value of
the invariant for place p. Such notation is adopted in the Tina software [9] which was used for obtaining the

Petri net figures in this paper. A line of the matrix (2) gives us a set of lines according to the used indices i
and j except the last two lines which contain variable number of components given by indices. The total

number of solutions is N;*"™ =5-k* +4-k +2.

We did not manage to prove that the matrix (2) is the basis of nonzero solutions of the system (1) but
it is possible to ground that each line of (2) is a solution of (1). And this fact allows the proof of p-invariance
for the net n2sk.

Lemma 1. Each line of the matrix (2) is a solution of the system (1).

Proof. Let us substitute each parametric line of (2) into each parametric equation of the system (1). It
gives us the correct statement. For instance, let us substitute the first line of (2)

(pi’ pii'), =1k, J'=1k+1

1il
into the second equation of (1)
4! =t =1k, j=1k.
We obtain:
—when i'#i or jy=j:0+0=0+0and further 0 = 0;
—wheni'=iand j=j:1+0=1+0and further1=1.
In the same way all the 16x7 combinations may be checked.
Theorem 1. The net n2sk is a p-invariant Petri net for an arbitrary natural number k .

Proof. Let us consider the sum of the sixth and seventh lines of the matrix (2) which represents the
solutions of the system (1) according to Lemma 1:

((psT, P, pi, P, i P, pid pid), i=1k, j=1k),
((pit, pieh), i=1k), ((pk™i, pltly, j=1k))

plus o
(O S ) i=1k),

((pi‘ﬁ*l,pzﬁrl, i=1,k), (psi™, pi™), 1=1k))
equals to

((Cps” Piil s Pro’ s Paots Pai’s Pait Pao s Pioys Pt s P2
pti)'?,j’ pki>'4]v pbl ), i =1k, ] Zﬁ),

((p5 pi™, P i), 1=1K),

(P i Pl piat ), 1 =1K)).

As all the NQZ” =13-k?*+8-k places are mentioned in this invariant, the Petri net n2sk is a

p-invariant net for an arbitrary natural number k . Moreover, as each component of (3) equals to the unit, the
net n2sk is a safe and bounded Petri net for an arbitrary natural number k .

©)
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As the p-invariance was proven for an arbitrary natural number k we say that the invariants of
infinite Petri nets with the regular structure were studied.

The proof that (2) is a basis of the system (1) solutions is appreciated. But this fact was only
grounded by the calculation experiments for the sequence k =1,..,10. Solutions given by (2) were compared

with the basis obtained via the Adriana software [10] for the matrix structure with definite k .

3. T-invariants and Deadlocks Structure. For the calculation of t-invariants the same approach
may be applied. It gains that the Petri net n2sk is not t-invariant, but it is not a surprise because the modeled
system is open as the terminal devices are not attached. The simplest way to prove it, is the consideration of
the border places without the input arcs (places without the output arcs as well). So let us consider the net
nf2sk which is obtained of the net n2sk by attaching the terminal devices nf represented in Fig. 2,b.

But due to the explosion of the basis even for a small enough k =3, the general parametric solution
was not constructed. This fact may be easily grounded by the consideration of all the consistent firing
sequences of transitions. At first we prove that the net nf2sk is t-invariant. For this purpose the consistent
firing sequence that contains all the transitions is constructed. We create a transmission graph of the
communication matrix. The graph is composed of the cells corresponding to the devices. The cells have the
form shown in Fig. 4.

Each arc of the graph corresponds to firing a pair of transitions supplying the movement of a packet
to the corresponding port. For instance, the arc (pli, p4o) represents the sequence tli4,t4o and so on. For the

graph shown in Fig. 4,b the following loop may be constructed, which contains all the arcs:

pli, p20, p2i, pdo, p4i, p3o, p3i, plo, pli, pdo, pdi, p2o, p2i, p3o, p3i, p4o, p4i, plo, pli, p3o, p3i,
p20, p2i, plo.

This loop corresponds to the following firing sequence of transitions

t1i2, t20, tfi-r, tfo-r, t2i4, tdo, tfi-l, tfo-l, t4i3, t30, tfi-d, tfo-d, t3i1, tlo, tfi-u, tfo-u, t1i4, t4o, tfi-l, tfo-I,

t4i2, t20, tfi-r, tfo-r, 12i3, t30, tfi-d, tfo-d, t3i4, t4o, tfi-l, tfo-l ,t4il, tlo, tfi-u, tfo-u, t1i3, t30, tfi-d, tfo-d,

t3i2, t20, tfi-r, tfo-r, t2i1, tlo, tfi-u, tfo-u,

which contains each transition at least once. So the net nf2sl is a t-invariant and, moreover,
consistent Petri net.

pli nlo pli plo

n3o p3i p3o p3i

a) without terminal devices (n2s1) b) with attached terminal devices (nf2s1)
Figure 4 — The transmission graph of a communication device

The cells are gathered into the matrix and supplied with the arcs which correspond to the actions of
terminal devices for the net nf2sk. An example of the graph for k =2 is represented in Fig. 5,a.

Theorem 2. The net nf2sk is a t-invariant Petri net for an arbitrary natural number K .

Proof. We prove the theorem in a constructive way using the structure of the transmission graph for
the net nf2sk. We construct the consistent firing sequence that contains all the transitions of the net on the
base of the loop of the transmission graph which contains all its arcs. Let us construct the main loop as the
composition of loops on the following directions: horizontal, vertical, primary diagonal, collateral diagonal:

1) horizontal loops:

ik+l

((pi! = P4, J=1Kk), pi™* — pl
2) vertical loops:
(" = pi™ 1=1Kk), pi™! = pg™, (p! = s =k, p = py') J=1k;
3) primary diagonal loops:

3.1) left-bottom triangle:

V+U,U V+U,U K+1,k—v+1 K+1,k—v+1

((IOX?”_L” =P Py v P — Py ’

K+L,k—v+1 K, k—v+1 V+U,U+L VHULU VUL v+u-1,u _ v,1 v,1 1L -
Pi — P, (et — pt, ptt — pet e u=k=vl), pa— pa), v=1k;

i 1

(Pt s pld, j=kD), pit > pih), i=1k;

k+1,k—v+1

k,k—v+1
— Py

- Pt u=1k-v), p;
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3.2) right-upper triangle:

u,v+u-1 u,v+u u,v+u
((py

u+1,v+u k—v+1,k k—v+1,k+1 . k—v+1,k+1 k—v+1,k+1 .
= Pa T Py , u=Lk-v,);

- pll pll - p4| p4| - p40 ’
k—v+1,k+1 k—v+Lk . u+L,v+u u,v+u u,v+u u,v+u-1 .
Pao > P (P > gy Pae > Py, U= k-v,1 -v1); plo - pl. ), V:1|k1

4) collateral diagonal loops:
4.1) left-upper triangle:

v—u+Lu v—u+lu v—u+l,u v—u,u+1 1v 1v
((p4 - pli ’pll - p4| , U= 1V 1) p4| - plo ! plo - pll ! pli - p4o’
v—u,u+l v—u+1,u v—u+l,u v—u+l,u .
(P2 > P ™, Pig = P, u=v— v—11), Pyt — py: Y, v=1k;
4.2) right-bottom triangle:
k—u+2,v+u-1 k—u+Lv+u
( p - p4l ! v+1,k v, k+1 v,k+1 v, k+1 v, k+1 v+1,k
plo - p4| p4| - p40 p4o - pll !
k—u+1,v+u k—u+1,v+u
p4| - plo y U :l,k—V)
k—u+1,v+u k—u+1,v+u
(py; — Pao , k+l, k+l, —
P o Pt ), v=1Kk.

pzou+1v+u N plkI —u+2, v+u—1, U= k——\/,l)
On the described loops, firing sequences of transitions may be unambiguously constructed. For
instance, the loops for the right-bottom triangle have the following form:

k— u+lv+u—1 k u+l,v+u-1 ¢k—-u,v+u ¢k-u\v+u _ v,k gvk v
((t3|2 20 t4|1 t v u —1'k_V) t3|2,t20 ' tﬁ—r’ ty

k—u,v+u k u,v+u g k—u+lv+u-1 gk-u+lv+u-1 _ _
(tia ' bis Ly , u=k-v] V1), th 4.t 4) v =1k.

It is easy to check that the sum of all the firing sequences corresponding to the described loops
contains each transition of the net nf2sk at least once and preserves the initial marking. So the net nf2sk is a
t-invariant and, moreover, consistent Petri net for an arbitrary natural number k.

In spite of the fact that the Petri net nf2sk is t-invariant and provides the transmission of packets
among each pair of terminal devices with redundancy, it contains deadlocks. Deadlocks may occur in the
pairs of communication devices but we are more interested in complex deadlocks involving an arbitrary
number of communication devices.

Each pair of neighbor communication devices may fall into a local deadlock, for instance, when the

device R" got | packets directed to the device R"1™* and the device R"'** got | packets directed to the

device R"! and, moreover, the input and output buffers of their common port are occupied with the packets.
Such a situation constitutes a t-dead marking for the transitions of both devices while other transitions of the
net nf2sk are potentially live.

In Fig. 3 the full deadlock for the net nf2s2 is shown. It involves all the four communication devices
of the matrix.

For the description of the deadlocks structures of the net nf2sk, the graph of possible blockings

shown in Fig. 5,b is constructed.

C.U s

%: Iﬁ@i.@i.

a) The transmission graph b) The graph of possible blockings
Figure 5 — Auxiliary graphs (examples for the net nf2sk)
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The directed loops of the graph (Fig. 5,b) correspond to the deadlocks of the communication matrix
nf2sk. Each arc connecting a pair of neighbor devices R/, R"J', |i—i|=1v|j-j|=1 means that R"} may

block itself iff it got | packets directed to R'“J', its output buffer of the port connecting R"1 with R"J

contains a packet and the device R"1" is also blocked. We may construct a simple chain of arcs and the real
deadlock occurs when it is closed in a loop. So deadlocks of the communication matrix may be described as
loops of the graph of possible deadlocks. A full deadlock involving all the devices (and all the transitions)
occurs when the loop contains all the devices in the matrix. Let us notice that it requires at least (I+1)-k?

packets which should be provided by the terminal devices. Such a deadlock may be easily constructed for an
even k using, for instance, the detours of the graph shown in Fig. 6,a.

v
v
v f 2912
e 3 3
.—>¢ \ \
W) . 3
\l/ Ne- SNe- SNe- Ne-
a) For an even k b) Forodd k=7

Figure 6 — The detours of the graphs of possible blockings

For an odd k, the loop may contain only k?-1 devices but in this case we could make one device
isolated by the loop that yields to the full deadlock. So the structure of the deadlocks is more complicated
because, besides the deadlock caused by a cycle of blockings, isolated communication devices may occur
with all the four neighbors belonging to the cycle. This case is rather simple for k=3 and illustrated with a
full deadlock instance for k =7 shown in Fig. 6,b.

In spite of the fact that rather sophisticated square communication matrices were studied, the
described deadlocks in the cycles of blockings and isolations are hard-nosed for real-life communication
graphs where devices with the compulsory buffering are used. We believe that these deadlocks may be
purposely inflicted by the specially situated generators of the peculiar traffic. In real-life networks, the
blocking of the devices is overcome with the time-out mechanisms causing the cleaning of the buffers but it
leads to a considerable fall of network performance as soon as the situation is repeated by the special
generators of perilous traffic.

Thus, in the present paper, the technique of the linear invariants calculation for infinite Petri nets
with the regular structure was presented. The technique was studied on the example of a communication
matrix of an arbitrary size but it seems that the obtained results might be generalized for an arbitrary
structure as well.

The application of the technique allowed the verification of the telecommunication protocols,
involving an arbitrary number of communicating devices. The modeled telecommunication device
constitutes a generalized router/switch with the compulsory buffering of the packets. Such positive properties
of the communication structure as safeness and consistency were obtained using the linear invariants of
infinite Petri nets.

It was grounded that the compulsory buffering of the packets inevitably leads to possible blockings
of communicating devices. The structure of the complex deadlocks involving an arbitrary number of
communicating devices caused by both the cycle of blockings and the isolation was studied.

Though in real-life networks the deadlocks are overcome by the cleaning of the buffers via the time-
out mechanism, it leads to a considerable decrease of the network performance and moreover might be
inflicted by the ill-intentioned traffic.
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