Свойства линейных параметрических двухполюсников высшего порядка

The properties of higher order linear parametrical time-dependent one-port networks

Аннотация. Рассматриваются свойства линейных параметрических двухполюсников высшего порядка. Выводятся матрицы комплексного сопротивления параметрических мемристорного и реактивного двухполюсников.

Summary. The properties of linear time-dependent one-port networks of higher order are discussed. In the case when these networks are memristors and reactive, matrices of parametrical complex resistance are built.

Развитие теории цепей и широкое применение ЭВМ привели к более сложным радиотехническим и телевизионным устройствам, в частности, к развитию параметрических систем. Повышение требований к аппаратуре, необходимость учета и применение новых параметрических эффектов явились хорошим стимулом для развития общей теории нестационарных и параметрических цепей.

В связи с появлением малошумящих входных видеоусилителей телевизионных камер на видиконе возникает проблема совершенствования этих видеоусилителей с низким уровнем собственных шумов [1].

Нерешенная часть общей проблемы малошумящего усиления упирается в неясность выбора элементов входного двухполюсника – эквивалентного нагрузочного сопротивления передающей трубки. Хотя параметрическая практика применяла емкостной элемент, не были определены свойства других элементов.

Наряду с параметрическими элементами: резистивными (мемристорными [2]), индуктивными и емкостными, представляющими собой идеализацию реально существующих элементов, предложено ввести новые двухполюсные параметрические элементы, называемые элементами высшего порядка [3-5]. Они могут быть реализованы с помощью соответствующих линейных параметрических и стационарных цепей [6].

Число параметрических различных элементов высшего порядка может быть бесконечным и счетным. Каждый из них обладает особыми, присущими только ему свойствами и характеристиками.

Однако эти свойства слабо изучены применительно к параметрическим элементам высшего порядка (ПарДВП) [7].

Цель данной работы является исследование свойств ПарДВП, которые давали бы возможность качественного определения передаточных характеристик.

Свойства ПарДВП

Элементы высшего порядка можно ввести формальным обобщением характеристик обычных элементов [6].

По определению параметрическими моделями являются линейные схемы, у которых все или некоторые параметры изменяются во времени периодически с частотой v. В этом определении подразумевается, что изменение параметров происходит синхронно с произвольными "начальными фазами".

Применим операторы дифференцирования-интегрирования

$$p = \frac{d}{dt}; p^{n} = \frac{d^{n}}{dt^{n}}; \dots p^{-1} = \int_{-\infty}^{t} dt; \dots p^{-n} = \int_{-\infty-\infty}^{t} \int_{-\infty}^{t} (dt)^{n}$$

Для моделирования воздействий необходимо определить независимые идеальные источники. Пусть набор составляют источники напряжения, тока, заряда, потока и так далее.

Рисунок 1 Схема с постоянными параметрами и одним обобщенным параметрическим двухполюсником *a*(*t*)

Рассмотрим воздействие и отклик алгебраической параметрической цепи Ω.

Пусть на некоторую схему «Пост. парам.» с постоянными параметрами, рис.1, воздействует источник $b = B e^{j\Omega t}$. К схеме подключен один параметрический двухполюсник с параметром a(t).

Как известно [3], воздействие и отклик на таком двухполюснике будут состоять из бесконечного количества комбинационных колебаний с частотами вида

$$\omega_k = \Omega + k\nu, \ k = 0, \pm 1, \pm 2, \dots$$

Представим обобщенные воздействия и отклик.

Обозначим обобщенное воздействие x и отклик y для параметрического алгебраического двухполюсника с обобщенным параметром a(t).

Если на схеме представлены последовательные элементы, рис. 1, то

$$\mathbf{y}(t) = \mathbf{a}(t) \, \mathbf{x}(t), \tag{1}$$

где $a(t) = a(t+T), T = 2\pi / \nu.$

Если это паралелльные элементы, то на оборот.

Пусть a(t) - дифференцируемая функция. Представим ее в виде ряда Фурье

$$a(t) = A_0 + a_{1\sim} + a_{2\sim} + \dots = A_0 + \sum_{n=1}^{\infty} a_{n\sim} = A_0 + \sum_{n=1}^{\infty} 2A_{n\sim} \cos(n\nu t + \varphi_n), \qquad (2)$$

где $A_0, A_{n\sim}$, φ_n - коэффициенты разложения в ряд Фурье функции *a*(*t*), которые являются чисто вещественными числами.

Обобщенный оператор a(t) представим в виде

$$a(t) = A_0 \gamma(t) , \qquad (3)$$

где безразмерная функция преобразования $\gamma(t)$ с помощью коэффициентов $\Gamma_n = A_{n\sim} / A_0$, $n = 1, 2, 3, ..., \infty$ запишется в форме ряда Фурье

$$\gamma(t) = 1 + 2 \Gamma_1 \cos(\nu t + \varphi_1) + 2 \Gamma_2 \cos(2\nu t + \varphi_2) + \dots = 1 + 2 \sum_{n=1}^{\infty} \Gamma_n \cos(n\nu t + \varphi_n).$$
(4)

В показательной форме этот ряд представится следующим образом:

$$\gamma(t) = 1 + \Gamma_{1}^{o} e^{jvt} + \Gamma_{1}^{*} e^{-jvt} + \dots \Gamma_{n}^{o} e^{jnvt} + \Gamma_{n}^{*} e^{-jnvt} + \dots,$$
(5)

где $\Gamma_n^{\circ} = \Gamma_n e^{j\phi}$, $\Gamma_n = \Gamma_n e^{-j\phi}$.

Представим обобщенные воздействия в форме

$$x(t) = \sum_{k=-\infty}^{\infty} \overset{\circ}{X}_{k} e^{j(\Omega+kvt)}, \overset{\circ}{X}_{k} = X_{k} e^{j\psi}.$$
(6)

Аналогично представим и отклик.

Подставляя выражения (5) и (6) в уравнение (1), получим обобщенное соотношение для алгебраического параметрического двухполюсника. Соотношение распадается на бесконечное количество уравнений для колебаний на каждой комбинационной частоте. Сократим диагональные матрицы, содержащие аргумент; в результате получим обобщенную векторно-матричную форму для комплексных амплитуд

$$[\mathbf{Y}] = A_0 [\mathbf{\gamma}] [\mathbf{X}] , \qquad (7)$$

где **[Y]**, **[X]** – матрицы-столбцы бесконечного порядка.

Матрица [ү] симметрическая (это матрица теплицева) и называется матрицей преобразования. Систему уравнений в представленном виде назовем бесконечной формой.

Рассмотрим линейный двухполюсник высшего порядка с периодически меняющимся параметром a(t) = a(t+T) (табл.1). Параметр периодически меняется под действием внешнего генератора с частотой v. Этот генератор обычно не показывается, а "тело" a(t) меняется с частотой v, которая называется частотой накачки.

Итак, в первой строке табл. 1 дано представление параметрической среды.

Таблица 1 - Временное и амплитудно-спектральное представления обобщенного ПарДВП в обобщенном базисе *x*-*y*

Представление среды	a(t) = a(t+T)	$a^{-1}(t) = a^{-1}(t+T)$
Временное воздействие	$y = p^h a(t) p^n x = p^h a(t+T) p^n x$	$x = p^{-n} a^{-1}(t) p^{-h} y = p^{-n} a^{-1}(t+T) p^{-h} y$
Амплитудные спектры	$[Y] = [A_{h,n}] [X]$	$[X] = [A^{-1}_{n,h}] [Y]$
Матрица преобразования	$[A_{h,n}] = [s]^h A_0 [\gamma]_z [s]^n$	$[A^{-1}{}_{h,n}] = [s]^{-n} A_0^{-1} [\gamma]_y [s]^{-h}$

2 строка представляет запись воздействия и отклика для ПарДВП.

3 строка показывает спектральное представление относительно амплитуд составляющих.

В 4 строке показано (доказательства смотри ниже) представление матрицы преобразования, где s = jω.

Повторяем, что здесь не сказано о том, что воздействие и отклик обязательно напряжения и токи. Здесь [X] какое-то воздействие, а [Y] какой-то отклик. И связь между ними также обозначена каким-то $[A_{h,n}]$.

Пусть воздействие напряжение и отклик ток, при параллельном соединении – наоборот. Перейдем к табл. 2, чтобы использовать привычные для нас сопротивления или проводимости.

Итак, для ПарДВП необходимо опять ввести спектральное представление, что позволяет ввести понятие комплексного сопротивления (проводимости).

Здесь приведена система спектральных представлений. В скобках даны только общие матрицы [U], [I]. Последняя строка представляет матрицу преобразования.

Таблица 2 - Е	Временное и с	спектральное в	представления	ПарДВП	в <i>и-і</i> базисе
---------------	---------------	----------------	---------------	--------	---------------------

Представление	a(t) = a(t+T)	$a^{-1}(t) = a^{-1}(t+T)$
Временное воздействие	$u = p^h a(t) p^n i = p^h a(t+T) p^n i$	$i = p^{-n} a^{-1}(t) p^{-h} u = p^{-n} a^{-1}(t+T) p^{-h} u$
Амплитудные спектры	$[U] = [Z_{h,n}] [I]$	$[I] = [Y_{n,h}] [U]$
Матрица преобразования	$[\boldsymbol{Z}_{h,n}] = [\boldsymbol{s}]^h \boldsymbol{A}_0 [\boldsymbol{\gamma}]_z [\boldsymbol{s}]^n$	$[Y_{h,n}] = [s]^{-n} A_0^{-1} [\gamma]_y [s]^{-h}$

Спектральное представление для ПарДВП, т.е. амплитудные спектры напряжений [*U*] и токов [*I*] даны:

$$[U] = [Z_{h,n}][I],$$

т.е. стандартное представление для токов, напряжений и матрицы $[Z_{h,n}]$. Аналогично обратное, связывающее дуальные представления $[I] = [Y_{n,h}] [U]$.

«Накачка», или закон вариации параметра, подразделяется на *z*-накачку и на *y*накачку. Здесь a(t) и $a^{-1}(t)$ непосредственно связаны с видом накачки, но так, чтобы:

$$a(t) = 1 / a^{-1}(t) \neq 0$$
 при любом *t*.

Комплексное сопротивление

Комплексное сопротивление связывает комплексные амплитуды напряжений и токов комбинационных частот $\omega_k = \Omega + k \nu$, k = ..., -1, 0, 1, ...

Для записи комплексного сопротивления важную роль играют специальные $\Theta_{h,n}(\eta)$ - матрицы. Для *rlc*-ПарДВП они вводятся с помощью трех теорем. (В таблицах по-прежнему принято обозначение *s* = *j* Ω .)

Введем диагональную матрицу $[\eta]^i$ в степени $i \in \{h,n\}$ и матрицу преобразования $[\gamma]$, приведенных в табл. 3 и 4.

	•••	•••	•••	•••	•••	
$(\eta)^i =$	 $(1-2\eta)^{i}$					
		$(1-\eta)^i$				
			1			
				$(1+\eta)^{i}$		
				V	$(1+2\eta)^{i}$	
		•••		•••		

Таблица 3 - Диагональная матрица [η] в степени $i \in \{h, n\}$

Таблица 4 - Матрица преобразования [γ]

		•••	•••		•••	•••	•••
		1	$\overset{*}{\Gamma_1}$	Γ_2^*	Γ_3^*	$\overset{*}{\Gamma_4}$	••••
	••••	$\overset{\bullet}{\Gamma_1}$	1	Γ_1^*	Γ_2^*	Γ_3^*	
		Γ_2	$\dot{\Gamma}_1$	1	Γ_1^*	Γ_2^*	
(γ) =		Γ_3	$\dot{\Gamma}_2$	$\dot{\Gamma}_1$	1	Γ_1^*	••••
		$\overset{\bullet}{\Gamma}_4$	Γ_3	Γ_2	$\overset{\bullet}{\Gamma_1}$	1	

Табл. 5 характеризует матрицу комплексного сопротивления $\left[\theta_{h,n}\right]$ для закона вариации параметра *a*(*t*) в произвольной периодической форме.

Таблица 5 – Матрица полного сопротивления $\left[\theta_{h,n}\right]$ в обобщенной бесконечной форме Закон вариации параметра $a(t) = 1 + 2\Gamma_1 \cos(vt) + 2\Gamma_2 \cos(2vt) + 2\Gamma_3 \cos(3vt) + ...$

	•••	•••		•••	•••	
•••	$(1-2\eta)^{h+n}$	$\frac{(1-2\eta)^{h}}{(1-\eta)^{-n}}\Gamma_{1}^{*}$	$(1-2\eta)^h \Gamma_2^*$	$\frac{(1-2\eta)^{h}}{(1+\eta)^{-n}}\Gamma_{3}^{*}$	$\frac{(1-2\eta)^{h}}{(1+2\eta)^{-n}}\Gamma_{4}^{*}$	
•••	$\frac{(1\!-\!\eta)^h}{(1\!-\!2\eta)^{-n}}\Gamma_1$	$(1-\eta)^{h+n}$	$(1-\eta)^h \Gamma_1^*$	$\frac{(1\!-\!\eta)^{h}}{(1\!+\!\eta)^{-n}}\Gamma_{2}^{*}$	$\frac{(1-\eta)^{h}}{(1+2\eta)^{-n}}\Gamma_{3}^{*}$	
•••	$\frac{1}{\left(1-2\eta\right)^{-n}}\Gamma_2$	$\frac{1}{(1-\eta)^{-n}} \overset{\bullet}{\Gamma_1}$	1	$\frac{1}{\left(1+\eta\right)^{-n}} \overset{*}{\Gamma_1}$	$\frac{1}{\left(1+2\eta\right)^{-n}}\Gamma_2^*$	•••
•••	$\frac{\left(1+\eta\right)^{h}}{\left(1-2\eta\right)^{-n}}\Gamma_{3}$	$\frac{\left(1+\eta\right)^{h}}{\left(1-\eta\right)^{-n}}\Gamma_{2}$	$(1+\eta)^h \mathring{\Gamma}_1$	$(1+\eta)^{h+n}$	$\frac{(1+\eta)^{h}}{(1+2\eta)^{-n}}\Gamma_{1}^{*}$	
•••	$\frac{\left(1+2\eta\right)^{h}}{\left(1-2\eta\right)^{-n}}\Gamma_{4}$	$\frac{\left(1+2\eta\right)^{h}}{\left(1-\eta\right)^{-n}}\Gamma_{3}$	$(1+2\eta)^h \Gamma_2$	$\frac{\left(1+2\eta\right)^{h}}{\left(1+\eta\right)^{-n}}\mathring{\Gamma}_{1}$	$(1+2\eta)^{h+n}$	
	•••	•••	•••	•••	•••	

$$\left[\Theta_{h,n}\right] =$$

Ленточная матрица полного сопротивления $[\Theta_{h,n}]_{\Gamma_1}$ в обобщенной бесконечной форме при гармоническом законе вариации параметра $a(t) = 1 + 2\Gamma_1 \cos(vt)$ приведена в табл. 6.

Таблица 6 – Ленточная матрица полного сопротивления $[\Theta_{h,n}]_{\Gamma_1}$ в обобщенной бесконечной форме; гармонический закон вариации параметра $a(t) = 1 + 2\Gamma_1 \cos(vt)$. $[\Theta_{h,n}]_{\Gamma_1} =$

	•••	•••	•••	•••	•••	
•••	$(1-2\eta)^{h+n}$	$\frac{(1-2\eta)^{h}}{(1-\eta)^{-n}}\Gamma_{1}^{*}$				•••
•••	$\frac{(1-\eta)^h}{(1-2\eta)^{-n}} \Gamma_1$	$(1-\eta)^{h+n}$	$(1-\eta)^h \Gamma_1^*$			•••
		$\frac{1}{(1-\eta)^{-n}} \overset{\bullet}{\Gamma_1}$	1	$\frac{1}{\left(1+\eta\right)^{-n}}\Gamma_1^*$		•••
•••			$(1+\eta)^h \stackrel{\bullet}{\Gamma_1}$	$(1+\eta)^{h+n}$	$\frac{(1+\eta)^{h}}{(1+2\eta)^{-n}}\Gamma_{1}^{*}$	•••
•••				$\frac{\left(1+2\eta\right)^{h}}{\left(1+\eta\right)^{-n}}\Gamma_{1}$	$(1+2\eta)^{h+n}$	•••
	•••	•••	•••	•••	•••	

Ленточная матрица полного сопротивления $\left[\theta_{h,n}\right]_{\Gamma_2}$ в обобщенной бесконечной форме при законе вариации параметра $a(t) = 1 + 2\Gamma_2 \cos(2\nu t)$, вторая гармоника вариации параметра.

Таблица 7 – Ленточная матрица полного сопротивления $\left[\theta_{h,n}\right]_{\Gamma_2}$ в обобщенной бесконечной форме; закон вариации параметра $a(t) = 1 + 2\Gamma_2 \cos(2vt)$

	•••	•••	•••	•••	•••	
•••	$(1-2\eta)^{h+n}$		$(1-2\eta)^h \Gamma_2^*$			•••
•••		$(1-\eta)^{h+n}$		$\frac{(1\!-\!\eta)^{h}}{(1\!+\!\eta)^{-n}}\Gamma_{2}^{*}$		•••
•••	$\frac{1}{\left(1-2\eta\right)^{-n}}\Gamma_2$		1		$\frac{1}{\left(1+2\eta\right)^{-n}}\Gamma_2^*$	
•••		$\frac{\left(1+\eta\right)^{h}}{\left(1-\eta\right)^{-n}}\Gamma_{2}$		$(1+\eta)^{h+n}$		•••
•••			$(1+2\eta)^h \Gamma_2$		$\overline{(1+2\eta)^{h+n}}$	•••
	•••	•••	•••	•••	•••	

$$\left[\theta_{h,n}\right]_{\Gamma_2} =$$

Классификация изомеров ПарДВП

Своеобразным "периодическим" законом для ПарДВП являются матрицы, представленные в табл. 8 и 9. Сравним их.

В табл. 8 приведенные комплексные сопротивления изомеров параметрических резистивных двухполюсников.

По вертикали они классифицируются как e_{Σ} - и d_{Σ} - элементы, порядок задает характеристическая константа $\sum_{r} = h + n = ..., 2, 1, 0, -1, -2, ...,$ определяемая, как сумма индексов h и n.

По горизонтали расположены резисторы одного порядка, они являются изомерами соответствующих вышеназванных элементов. Привязка осуществляется к одному из индексов, в данной таблице - к *n*. В центре таблицы представлен обычный параметрический резистор и уже от него влево и вправо расположены изомеры мемристоров. Например, там представлен параметрический мемристор типа Чуа, фактически являющийся обычным изомером параметрического резистора нулевого порядка, т. к. характеристическая константа

$$\Sigma = h + n = 1 + (-1) = 0$$
.

Рассмотрим три важные теоремы для ПарДВП.

Теорема 1. (О матричном комплексном сопротивлении резистивного параметрического ДВП). Комплексное сопротивление резистивного ПарДВП имеет матричную форму и определяется с помощью Θ -матриц по формуле

$$[z_{r(\Omega)}^{h+n}] = s^{h+n} R_0 \Theta_{h,n}(\eta) , \qquad (1)$$

где $s=j\Omega$; сумма констант $\sum_r = (h+n) = ...-4, -2, 0, 2, 4,...$

Доказательство. Ядро комплексного сопротивления образует матрица преобразования [γ]. После умножения слева на диагональную матрицу [η]^{*h*} и справа - на [η]^{*n*}, получаем матрицу $\Theta_{h,n}(\eta)$. Применим метод последовательных рассуждений.

Рассмотрим изомеры параметрических мемристоров. Для них характеристическая константа $\sum_{r} = h + n = 0$ и потому *s* =1, а значит комплексное сопротивление мемристоров не зависит от *s* в явной форме:

$$[z] = [s]^{h} R_{0} [\gamma][s]^{n} = s^{h} [\eta]^{h} R_{0} [\gamma] s^{n} [\eta]^{n} = s^{h+n} [\eta]^{h} R_{0} [\gamma][\eta]^{n} = R_{0} [\eta]^{h} [\gamma][\eta]^{n} ,$$

$$[z] = R_{0} \Theta_{h,n}(\eta) .$$
(2)

По этой формуле заполним среднюю строку табл.8. Таким образом семейство мемристоров не имеет явной зависимости от частоты сигнала .

Рассмотрим семейство e(t)-элементов. Например, e_1 - изомеры характеризует $\sum = h+n=2$, поэтому можно записать импеданс

$$[z] = [s]^{h} R_{0} [\gamma] [s]^{n} = s^{h} [\eta]^{h} R_{0} [\gamma] s^{n} [\eta]^{n} = s^{2} R_{0} \Theta_{h,n}(\eta)$$
$$[z] = -\Omega^{2} R_{0} \Theta_{h,n}(\eta).$$
(3)

Формула позволяет заполнить строку для *e*₁ – изомеров.

Точно также доказывается комплексное сопротивление для других *е-* и *d-*изомеров, что позволяет заполнить следующие строки табл. 7. Изучение полученных зависимостей приводит к формуле (3).

Далее рассмотрим теорему для индуктивного ПарДВП.

Теорема 2. (Теорема о матричном комплексном сопротивлении индуктивного параметрического ДВП). Рассмотрим верхнюю половину рис. 9. Матричное комплексное сопротивление индуктивного ПарДВП определяется с помощью $\Theta_{h,n}(\eta)$ -матриц по формуле

$$[z_{l(\Omega^{h+n})}] = s^{h+n} L_0 \Theta_{h,n}(\eta) , \qquad (4)$$

где $s = j\Omega$, $\sum_{l} = h + n = 1, 3, 5...$

Доказательство. Ядро комплексного сопротивления по-прежнему образует матрица преобразования [γ]. После умножения слева на диагональную матрицу [η]^{*h*} и справа - на [η]^{*n*}, получаем матрицу $\Theta_{h,n}(\eta)$.

Рассмотрим изомеры частотно независимой параметрической индуктивности. Для них $\sum_{1} = h + n = 1$ и потому матричное комплексное сопротивление

$$[z] = [s]^{h} L_{0} [\gamma] [s]^{n} = s^{h} [\eta]^{h} L_{0} [\gamma] s^{n} [\eta]^{n} = s^{h-n} [\eta]^{h} L_{0} [\gamma] [\eta]^{n} = j\Omega L_{0} [\eta]^{h} [\gamma] [\eta]^{n},$$

$$[z] = j\Omega L_{0} \Theta_{h,n}(\eta)$$
(5)

зависит от Ω в явном виде только в 1-й степени.

По этой формуле заполним соответствующую строку верхней половины табл. 9. Таким образом, данное семейство (изомеры) индуктивностей не имеет явной зависимости от частоты сигнала Ω.

Над ней, т.е. второй строке снизу в табл. 9 представлены импедансы изомеров первого представителя частотно-зависимых параметрических индуктивностей. Для них $L_3 = -L(\Omega^2)$, а характеристическая константа $\sum_l = h+n = 3$. Запишем матричное комплексное сопротивление:

$$[z] = [s]^{h} L_{0} [\gamma] [s]^{n} = s^{h} [\eta]^{h} L_{0} [\gamma] s^{n} [\eta]^{n} = s^{h-n} [\eta]^{h} L_{0} [\gamma] [\eta]^{n} = -j\Omega (\Omega^{2} L_{0}) [\eta]^{h} [\gamma] [\eta]^{n},$$

$$[z] = -j\Omega (\Omega^{2} L_{0}) \Theta_{h,n}(\eta) = j\Omega L_{3} \Theta_{h,n}(\eta)$$
(6)

где L_3 отрицательна и зависит от частоты сигнала во второй степени Ω^2 .

Аналогично выводится комплексное сопротивление для других изомеров ПДВП, что позволяет заполнить всю верхнюю часть табл. 9. Изучение полученных зависимостей приводит к формуле (4).

Теорема 3. (Теорема о матричном комплексном сопротивлении емкостного ПарДВП). Рассмотрим вторую, нижнюю половину табл. 9.

Комплексное сопротивление емкостного ПарДВП можно записать с помощью матриц

$$[z_{c(\Omega}^{h+n})] = s^{h+n} C_0^{-1} \Theta_{h,n}(\eta) , \qquad (7)$$

где $s = j\Omega$, $\sum_{c} = (h+n) = -1, -3, -5...$

Доказательство. Ядро импеданса образует матрица преобразования [γ]; после умножения слева на диагональную матрицу [η]^{*h*} и справа - на [η]^{*n*}, получаем матрицу $\Theta_{h,n}(\eta)$.

Рассмотрим изомеры параметрических частотно-независимых емкостей, для которых характеристическая константа $\sum_{c} = h + n = -1$. Покажем, что их комплексное сопротивление зависит от *s* только в (-1)-й степени:

$$[z] = [s]^{h} C_{0}^{-1} [\gamma] [s]^{n} = s^{h} [\eta]^{h} C_{0}^{-1} [\gamma] s^{n} [\eta]^{n} = s^{h-n} C_{0}^{-1} [\eta]^{h} [\gamma] [\eta]^{n},$$

$$[z] = (1/(j\Omega C_{0})) [\eta]^{h} [\gamma] [\eta]^{n} = (1/(j\Omega C_{0})) \Theta_{h,n}(\eta).$$
(8)

По формуле (8) заполнена верхняя строка второй половины (нижней) табл. 8; эти изомеры емкостей не имеют явной зависимости от частоты сигнала.

На второй строке сверху второй половины табл. 9 представлены комплексное сопротивление изомеров первого представителя частотно-зависимых параметрических емкостей $-c(\Omega^2)$. Для них характеристическая константа $\sum_c = h+n = -3$, матричное комплексное сопротивление запишется:

$$[z] = [s]^{h} C_{0}^{-1} [\gamma] [s]^{n} = s^{h} [\eta]^{h} C_{0}^{-1} [\gamma] s^{n} [\eta]^{n} = s^{h-n} [\eta]^{h} C_{0}^{-1} [\gamma] [\eta]^{n},$$

или окончательно

$$[z] = -(1/(j\Omega(\Omega^2 C_0))) [\eta]^h [\gamma] [\eta]^n = -(1/(j\Omega(\Omega^2 C_0))) \Theta_{h,n}(\eta) = -(1/(j\Omega C_0)) \Theta_{h,n}(\eta).$$
(9)

Комплексное сопротивление зависит от Ω^{-3} , следовательно, эквивалентная емкость зависит от частоты $C_{2} = -\Omega^{2}C_{0}$ и отрицательна.

n Σ	-4	-3	-2	-1	0	1	2	3	4	
6			•••	•••	•••	•••	•••	•••	•••	•••
4					$\Omega^4 R_0 \Theta_{4,0}(\eta)$	$\Omega^4 R_0 \Theta_{3,1}(\eta)$	$\Omega^4 R_0 \Theta_{2,2}(\eta)$	$\Omega^4 R_0 \Theta_{1,3}(\eta)$	$\Omega^4 R_0 \Theta_{0,4}(\eta)$	•••
2		•••	•••	$-\Omega^2 R_0 \Theta_{3,-1}(\eta)$	$-\Omega^2 R_0 \Theta_{2,0}(\eta)$ (е-элемент)	$-\Omega^2 R_0 \Theta_{1,1}(\eta)$	$-\Omega^2 R_0 \Theta_{0,2}(\eta)$	$-\Omega^2 R_0 \Theta_{-1,3}(\eta)$	•••	
0		•••	$R_0\Theta_{2,-2}(\eta)$	$R_0\Theta_{1,-1}(\eta)$	$R_0 \Theta_{0,0}$	$R_0\Theta_{_{-1,1}}(\eta)$	$R_0\Theta_{-2,2}(\eta)$	•••	•••	
				Мемристор (Chua-элемент)	Резистор	(Дифференциальный резистор)ь				
-2		$-\Omega^{-2}R_0\Theta_{1,-3}(\eta)$	$-\Omega^{-2}R_0\Theta_{0,-2}(\eta)$	$\frac{\text{Мемристор}}{(Chua-элемент)} \\ -\Omega^{-2} R_0 \Theta_{-1,-1}(\eta)$	Резистор $-\Omega^{-2}R_0\Theta_{-2,0}(\eta)$ (d-элемент)	$(Дифференциальный резистор)ь$ $-\Omega^{-2}R_0\Theta_{-3,1}(\eta)$				
-2 -4	\dots $\Omega^{-4}R_0\Theta_{0,-4}(\eta)$	$-\Omega^{-2}R_{0}\Theta_{1,-3}(\eta)$ $\Omega^{-4}R_{0}\Theta_{-1,-3}(\eta)$	$-\Omega^{-2}R_0\Theta_{0,-2}(\eta)$ $\Omega^{-4}R_0\Theta_{-2,-2}(\eta)$	$\frac{\text{Мемристор}}{(\text{Сhua-элемент})} - \Omega^{-2} R_0 \Theta_{-1,-1}(\eta)$ $\Omega^{-4} R_0 \Theta_{-3,-1}(\eta)$	Резистор $-\Omega^{-2}R_0\Theta_{-2,0}(\eta)$ (d-элемент) $\Omega^{-4}R_0\Theta_{-4,0}(\eta)$	(Дифференциальный резистор)ь $-\Omega^{-2}R_0\Theta_{-3,1}(\eta)$			•••	
-2 -4 -6	\dots $\Omega^{-4}R_0\Theta_{0,-4}(\eta)$ \dots	$-\Omega^{-2}R_0\Theta_{1,-3}(\eta)$ $\Omega^{-4}R_0\Theta_{-1,-3}(\eta)$	$-\Omega^{-2}R_0\Theta_{0,-2}(\eta)$ $\Omega^{-4}R_0\Theta_{-2,-2}(\eta)$	$\frac{\text{Мемристор}}{(\text{Сhua-элемент})} - \Omega^{-2} R_0 \Theta_{-1,-1}(\eta)$ $\Omega^{-4} R_0 \Theta_{-3,-1}(\eta)$	Резистор $-\Omega^{-2}R_0\Theta_{-2,0}(\eta)$ (d-элемент) $\Omega^{-4}R_0\Theta_{-4,0}(\eta)$	(Дифференциальный резистор)ь $-\Omega^{-2}R_0\Theta_{-3,1}(\eta)$				

Таблица 8 – Параметрические резистивные (мемристорные) двухполюсники высшего порядка: комплексное сопротивление изомеров ПарДВП

n	-4	-3	-2	-1	0	1	2	3	4
Σ									
7		$-j\Omega^7 L_0 \Theta_{10,-3}(\eta)$	$-j\Omega^7 L_0 \Theta_{9,-2}(\eta)$	$-j\Omega^7 L_0 \Theta_{8,-1}(\eta)$	$-j\Omega^7 L_0 \Theta_{7,0}(\eta)$	$-j\Omega^7 L_0 \Theta_{6,1}(\eta)$	$-j\Omega^7 L_0 \Theta_{5,2}(\eta)$	$-j\Omega^7 L_0 \Theta_{4,3}(\eta)$	
5		$j\Omega^5 L_0 \Theta_{8,-3}(\eta)$	$j\Omega^5 L_0 \Theta_{7,-2}(\eta)$	$j\Omega^5 L_0 \Theta_{6,-1}(\eta)$	$j\Omega^5 L_0 \Theta_{5,0}(\eta)$	$j\Omega^5 L_0 \Theta_{4,1}(\eta)$	$j\Omega^5 L_0 \Theta_{3,2}(\eta)$	$j\Omega^5 L_0 \Theta_{2,3}(\eta)$	
3		$-j\Omega^3 L_0 \Theta_{6,-3}(\eta)$	$-j\Omega^3 L_0 \Theta_{5,-2}(\eta)$	$-j\Omega^3 L_0 \Theta_{4,-1}(\eta)$	$-j\Omega^3 L_0\Theta_{3,0}(\eta)$	$-j\Omega^3 L_0 \Theta_{2,1}(\eta)$	$-j\Omega^3 L_0 \Theta_{1,2}(\eta)$	$-j\Omega^3 L_0\Theta_{0,3}(\eta)$	
1		$j\Omega^1 L_0 \Theta_{4,-3}(\eta)$	$j\Omega^1 L_0 \Theta_{3,-2}(\eta)$	$j\Omega^1 L_0 \Theta_{2,-1}(\eta)$	$j\Omega L_0\Theta_{1,0}(\eta)$	$j\Omega^1 L_0 \Theta_{0,1}(\eta)$	$j\Omega^1 L_0 \Theta_{-1,2}(\eta)$	$j\Omega^{1}L_{0}\Theta_{-2,3}(\eta)$	
					Индуктивность				L
0		==	==	==	=	==	==	==	_
-1		$(j\Omega C_0)^{-1}\Theta_{2,-3}(\eta)$	$(j\Omega C_0)^{-1}\Theta_{1,-2}(\eta)$	$(j\Omega C_0)^{-1}\Theta_{0,-1}(\eta)$ Обратная емкость	$(j\Omega^1 C_0)^{-1} \Theta_{\scriptscriptstyle -1,0}(\eta)$	$(j\Omega^1 C_0)^{-1}\Theta_{-2,1}(\eta)$	$(j\Omega^1 C_0)^{-1}\Theta_{-3,2}(\eta)$	$(j\Omega^1 C_0)^{-1} \Theta_{-4,3}(\eta)$	
-3		$-(j\Omega^{3}C_{0})^{-1}\Theta_{0,-3}(\eta)$	$-(j\Omega^{3}C_{0})^{-1}\Theta_{-1,-2}(\eta$	$-(j\Omega^{3}C_{0})^{-1}\Theta_{-2,-1}(\eta)$	$-(j\Omega^{3}C_{0})^{-1}\Theta_{-3,0}(\eta)$	$-(j\Omega^{3}C_{0})^{-1}\Theta_{-4,1}(\eta)$	$-(j\Omega^{3}C_{0})^{-1}\Theta_{-5,2}(\eta)$	$-(j\Omega^{3}C_{0})^{-1}\Theta_{-6,3}(\eta)$	
-5		$(j\Omega^5 C_0)^{-1}\Theta_{-2,-3}(\eta)$	$(j\Omega^5 C_0)^{-1}\Theta_{-3,-2}(\eta)$	$(j\Omega^5 C_0)^{-1} \Theta_{-4,-1}(\eta)$	$(j\Omega^5 C_0)^{-1}\Theta_{-5,0}(\eta)$	$(j\Omega^5 C_0)^{-1}\Theta_{-6,1}(\eta)$	$(j\Omega^5 C_0)^{-1}\Theta_{-7,2}(\eta)$	$(j\Omega^5 C_0)^{-1}\Theta_{-8,3}(\eta)$	
-7		$-(j\Omega^7 C_0)^{-1}\Theta_{-4,-3}(\eta)$	$-(j\Omega^7 C_0)^{-1}\Theta_{-5,-2}(r_0)^{-1}$	$-(j\Omega^7 C_0)^{-1}\Theta_{-6,-1}(\eta)$	$-(j\Omega^7 C_0)^{-1}\Theta_{-7,0}(\eta)$	$-(j\Omega^7 C_0)^{-1}\Theta_{-8,1}(\eta)$	$-(j\Omega^7 C_0)^{-1}\Theta_{-9,2}(\eta)$	$-(j\Omega^7 C_0)^{-1}\Theta_{-10,3}(\eta)$	

Таблица 9 - Параметрические реактивные (индуктивные и обратной емкости) двухполюсники высшего порядка: комплексное сопротивление изомеров ПарДВП

Аналогично доказывается комплексное сопротивление для других изомеров, что позволяет заполнить нижнюю часть табл. 8. Изучение полученных зависимостей приводит к приведенной формуле (9).

В табл. 9 в верхней части представлены матричные комплексные сопротивления изомеров параметрических индуктивностей. По вертикали снизу вверх они расположены в соответствии с суммой индексов Σ_l , а по горизонтали - как в предыдущем случае.

Аналогично в табл. 9 в нижней части расположены матричные комплексные сопротивления изомеров параметрических емкостей, только сумма индексов отсчитывается сверху вниз.

Таблицы позволяют построить универсальную таблицу ПарДВП.

Моделирование ПарДВП

Ниже представлены две схемы, с помощью которых можно моделировать ПарДВП, а именно, входное комплексное сопротивление для [U] и [I]. Эти схемы непосредственно вытекают из аналогичных нестационарных схем **НстДВП** [6].

Итак, даны два определения ПарДВП, для которого a = a(t) = a(t+T), в виде комплексного сопротивления $[U] = [s]^h A_0[\gamma]_z [s]^n [I]$ для первой схемы и в виде комплексной проводимости $[I] = [s]^{-n} A_0^{-1}[\gamma]_y [s]^{-h} [U]$ для второй. Покажем это.

1) Воспользуемся 2 и 3 строками табл. 2. Первая схема моделирования представлена на рис. 2.

Рисунок 2 – Первая схема для моделирования параметрического комплексного сопротивления ДВП $[s]^h A_0[\gamma]_z [s]^n$ с помощью параметрической проводимостью $A_0[\gamma]_y$

Для напряжения на входе схемы запишем уравнение

$$[U] = [E] = k [U_h] = k[s]^h [U_2] = k[s]^h [E_2] = kR_2[s]^h [I_n] = kR_2[s]^h A_0 [\gamma]_y [U_n] = kR_2[s]^h A_0 [\gamma]_y [s]^n [E_1] = [s]^h A_0[\gamma]_z [s]^n [I].$$

Следовательно, для этой схемы справедливо выражение (10)

$$[U] = kR_2 [s]^h A_0 [\gamma]_y [s]^n [E_1] = [s]^h A_0 [\gamma]_z [s]^n [I].$$
(10)

Таким образом, получено параметрическое комплексное сопротивление.

2) Вторая схема моделирования представлена на рис. 3. Схема позволяет моделировать параметрическую проводимость.

Рисунок 3 – Вторая схема для моделирования параметрической проводимости ДВП $[s]^{-n} A_0^{-1}[\gamma]_y [s]^{-h} [U]$ с помощью $A_0[\gamma]_y$

Запишем выражение для комплексной проводимости

$$[I] = [J] = G [U_n] = G [s]^n [E_2] = G [s]^n R_2 [I_h] = [G] R_2 [s]^n A_0 [\gamma] [U]_h = G R_2 [s]^n A_0 [\gamma] [s]^h [E_1] = G R_2 [s]^n A_0 [\gamma] [s]^h k [U].$$

Следовательно, для схемы справедливо выражение (11)

$$[I] = [s]^{-n} G R_2 k A_0^{-1} [\gamma] [s]^{-h} [U] = [s]^{-n} A_0^{-1} [\gamma]_y [s]^{-h} [U],$$
(11)

т.е. получена параметрическая комплексная проводимость.

При необходимости можно введением дополнительных параметров в схему замещения учесть влияние реальных интеграторов на искажения частотных характеристик элементов высшего порядка.

В заключение сделаем выводы.

Предложено представление ПарДВП в виде таблиц мемристорных и реактивных двухполюсников. Основные свойства элементов необходимо изучить методами спектроскопии. Те типы, у которых спектроскопия обнаружит полезные свойства, можно внедрить в практику. Целесообразны подробные каталоги спектров ПарДВП, так как они могут помочь в задаче синтеза различных устройств.

Комплексные сопротивления ПарДПВ находятся в матричной форме с помощью специальных таблиц. Определение ПарДВП с помощью описания комплексного сопротивления целесообразно выполнить в форме, напоминающей классическое представление; по горизонтали расположить резистивные комплексные сопротивления, по вертикали в верхней полуплоскости расположить индуктивные, а в нижней - емкостные комплексные сопротивления ПарДВП.

Предложены две схемы для моделирования параметрических схем.

Литература

- 1. *Арбузников В. А., Бельдюгин В. Н., Ракоед А. Ф.* Параметрический балансный видеоусилитель / В сб. "Вопросы электросвязи".- К.: Техніка, 1969.- С. 35-42.
- 2. *Кузнецов К.* Memristor найден четвертый базовый элемент электрической цепи // Компьютерное Обозрение. 2008. № 20. 27 мая. С.68-69.
- 3. *Арбузников В. А., Варава Ю. В.* Автоматическое проектирование алгебраических цепей. Определения. // Наукові праці ОНАЗ ім. О.С. Попова. 2002. № 3. С. 6 19.
- 4. *Арбузников В.А., Варава Ю.В.* Внешние дополнения для нестационарных двухполюсников // Праці УНДІРТ. 2007. № 1 (49). С. 10 20.
- Арбузников В.А., Варава Ю.В. Нестационарные двухполюсники. «Праці науковопрактичної конференції "Перспективні технологічні та ринкові напрями розвитку телекомунікаційних послуг у новітніх безпроводових системах зв'язку", 22-24 березня 2007 року. – Одеса, 2007. – с. 3-6.
- 6. *Варава Ю.В., Арбузников В.А.* Мемристорные и реактивные нестационарные линейные двухполюсники высшего порядка и их моделирование // Наукові праці ОНАЗ ім. О. С. Попова. 2007. №2. С.45-52.
- Иваницкий А. М. Получение расширенного набора элементов электрических цепей. / Гос. бюджетная НИР кафедры ТЛЭЦ «Исследование активных преобразователей и фильтров», 1981/1982 уч. год, Одесса, 1982. – Гос. регистрация 80073970.