РАДІОТЕХНІКА ТА ТЕЛЕКОМУНІКАЦІЇ

УДК 621.362.2

Кадацкий А.Ф. Kadatskyy A.F.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ЭЛЕКТРИЧЕСКИХ ПРОЦЕССОВ В ИМПУЛЬСНЫХ ПРЕОБРАЗОВАТЕЛЯХ ПОСТОЯННОГО НАПРЯЖЕНИЯ С ГРАНИЧНЫМ РЕЖИМОМ ФУНКЦИОНИРОВАНИЯ

MATHEMATICAL MODEL OF ELECTRICAL PROCESSES IN PULSE CONVERTERS OF CONSTANT VOLTAGE WITH LIMIT – DISCONTINUOUS MODE OF OPERATION

Аннотация. Представлена математическая модель электрических процессов в преобразователях постоянного напряжения с автотрансформаторным включением дросселя, обобщенная к восьми типам силовых каналов с граничным режимом функционирования.

Summary. The mathematical model of electrical processes in converters of constant voltage with autotransformer insert of an among choke generalized to three mode of operations – continuous, boundary and discontinuous, and eight types of power channels is shown.

На предприятиях связи существует проблема повышения технико-экономических показателей устройств и систем электропитания. Основным критерием построения современных устройств и систем электропитания является высокое значение КПД при снижении массогабаритных показателей.

Импульсные преобразователи электрической энергии позволяют создавать источники вторичного электропитания и системы гарантированного бесперебойного электроснабжения предприятий связи с высокими значениями технико-экономических показателей, отвечающих требованиям международных стандартов. Использование граничного режима функционирования силовых каналов (СК) позволяет уменьшить энергетические потери при переключении силовых ключей, уменьшить уровень излучаемых помех.

Разработка и исследование характеристик современных схем импульсных преобразователей существенно упрощается при наличии математических моделей, описывающих их характеристики и поведение. В известных научно-технических публикациях [1 ... 6], специфика конкретной схемы преобразователя, режим ее работы отражаются отдельной, специально разработанной математической моделью. В результате, с увеличением количества рассматриваемых схем и режимов их работы, увеличивается (пропорционально) и количество математических моделей. Это усложняет решение задачи повышения эффективности процесса разработки, решение задач анализа, автоматизированного исследования, синтеза и оптимизации преобразователей электрической энергии с использованием ЭВМ.

Использование в работах [7, 8, 9] методов анализа позволило получить математические модели электрических процессов различных типов силовых каналов преобразователей постоянного напряжения с широтно-импульсным методом регулирования в виде обобщенных соотношений к типу силового канала (для восьми основных типов схем силовой части), режиму работы и автотрансформаторному включению дросселей. Однако в настоящее время отсутствуют обобщенные к типу силового канала математические модели электрических процессов восьми наиболее известных схемотехнических решений импульсных преобразователей постоянного напряжения с граничным режимом функционирования. Поэтому требуется унифицировать описание режимов работы напряжения с энергетически эффективным граничным режимом функционирования.

Цель работы – разработка математической модели, которая одновременно описывает восемь наиболее известных схемотехнических решений импульсных преобразователей постоянного напряжения с граничным режимом функционирования.

Накопительные дроссели сглаживающих фильтров могут включаться по автотрансформаторной схеме. Такое исполнение дросселя позволяет или уменьшить (рис. 1, a, e, d), или увеличить (рис. 1, f, c, e) напряжение на силовом коммутирующем транзисторе по сравнению с простейшими типами силовых каналов с однообмоточным дросселем.

При выполнении анализа импульсных преобразователей – восьми основных типов (*y* =1, 2, ..., 8) схем силовой части – силовых каналов СК преобразователей постоянного напряжения

(приведены на рис. 1) были использованы методы анализа и допущения, принятые в [7, 8, 9]: силовые коммутирующие элементы (транзисторы, диоды) являются идеальными ключами, время их переключения равно нулю; активные сопротивления обмоток дросселей и внутреннее сопротивление источника электропитания равны нулю; выходное напряжение $U_{\rm H}$ и ток $I_{\rm H}$ нагрузки – постоянны; индуктивности обмоток дросселя и емкость конденсатора фильтра линейны; между обмотками дросселя преобразователя обеспечивается 100% магнитная связь, индуктивности рассеяния дросселей и трансформаторов равны нулю.

Рисунок 1 – Силовые каналы преобразователей постоянного напряжения

В отличие от [7, 8, 9] СК функционируют не с ШИМ методом регулирования, а с граничным режимом работы силовых дросселей. Электрические процессы в СК при граничном режиме работы накопительного дросселя приведены на рис. 2.

Для преобразователей с рассматриваемыми типами ($y = 1 \dots 8$) силовых каналов характер изменения тока $i_L(t)$ и напряжения $u_L(t)$ дросселя выходного сглаживающего фильтра, а также токов (см. табл. 1) ключей $i_{S1}(t)$, $i_{VD1}(t)$ и выходного конденсатора $i_C(t)$ одинаков:

$$i_{L}(t) = \begin{cases} i_{L_{H}}(t) = I_{m1} \frac{t}{t_{H}}, & \text{при} \qquad 0 \le t \le t_{H}; \\ i_{L_{B}}(t) = I_{m2} \left(1 + \frac{t_{H} - t}{t_{B}} \right) & \text{при} \qquad t_{H} < t \le t_{H} + t_{B}; \end{cases}$$
(1)

$$\begin{split} u_{L}(t) &= \begin{cases} U_{LH} = U_{BX} - F_{HY}U_{H} & \Pi p H & 0 \le t \le t_{H}; \\ U_{LB} = U_{H} - F_{BY}U_{BX} & \Pi p H & t_{H} < t \le t_{H} + t_{B}; \end{cases} \end{split}$$
(2)
$$F_{HY} &= \begin{cases} 1 & \Pi p H & y = 1, 4, 6, 7, 8; \\ 0 & \Pi p H & y = 2, 3, 5; \end{cases} \\F_{BY} &= \begin{cases} 1 & \Pi p H & y = 2; \\ 0 & \Pi p H & y = 2; \\ 0 & \Pi p H & y = 1, 3 \dots 8. \end{cases} \end{cases} \end{cases}$$
(3)
$$F_{BY} &= \begin{cases} U_{II} & \Pi p H & y = 1, 2, 3, 5; \\ U_{II} K_{TP} & \Pi p H & y = 4, 6, 7; \\ U_{II} K_{TP} & \Pi p H & y = 8; \end{cases}$$
(4)
$$K_{TP} &= W_{TP2} / W_{TP1}, \end{cases}$$

где I_{m1} , I_{m2} – размахи пульсаций токов соответственно в индуктивности L_1 обмотки с числом витков W_1 и в индуктивности L_2 обмотки с числом витков W_2 силового дросселя; $i_{LH}(t)$ и U_{LH} , $i_{LB}(t)$ и U_{LB} , $i_{L\pi}(t)$ – токи и напряжения обмоток дросселя выходного сглаживающего фильтра на интервалах времени соответственно накопления и возврата; F_{HY} , F_{BY} – коэффициенты [7, 8, 9] топологии схем СК преобразователей, позволяющие учесть специфику конфигурации рассматриваемых типов (у) СК на интервалах времени соответственно t_{H} – накопления и t_{B} – возврата; U_{BX} – напряжение, прикладываемое на вход силового сглаживающего фильтра; κ_{TP} – коэффициент трансформации силового трансформатора СК; W_{TP1} , W_{TP2} – числа витков соответственно первичной и вторичной обмоток силового трансформатора СК.

NC	Зависимость	Интервалы периода Т		
JNO		$0 < t \leq t_{\scriptscriptstyle \mathrm{H}}$	$t_{_{\rm H}} < t \leq T$	
(1)	$u_L(t)$	$U_{\rm bx} - F_{\rm hy}U_{\rm h}$	$U_{_{ m H}}-F_{_{ m By}}U_{_{ m BX}}$	
(2)	$i_{W1}(t)$	$I_{m1}t/t_{ m H}$	0	
(3)	$i_{W2}(t)$	0	$I_{m2} \left[1 + (t_{\rm H} - t) / t_{\rm B} \right]$	
(4)	$i_{W1\cup W2}(t)$	$I_{m1}t/t_{\rm H}$	$I_{m2}[1+(t_{\rm H}-t)/t_{\rm B}]$	
(5)	$i_{S1}(t)$	$\kappa_{_{\mathrm{TP}}}I_{m1}t/t_{_{\mathrm{H}}}$	0	
(6)	$i_{VD1}(t)$	0	$I_{m2}[1+(t_{\rm H}-t)/t_{\rm B}]$	
(7)	$i_{VD2}(t)$	$I_{m1}t/t_{ m H}$	0	
(8)	$i_{C_{\mathrm{H}}}(t)$	$(F_{\rm Hy}I_{m1}t/t_{\rm H})-I_{\rm H}$	$I_{m2} [1 + (t_{\rm H} - t)/t_{\rm B}] - I_{\rm H}$	
(9)	$i_{_{\rm BX}}(t)$	$\kappa_{\rm Tp} I_{m1} t / t_{\rm H}$	$F_{\rm By} \kappa_{\rm Tp} I_{m2} \left[1 + (t_{\rm H} - t) / t_{\rm B} \right]$	
(10)	$i_{\rm bbix}(t)$	$F_{_{\mathrm{H}\mathrm{y}}}I_{_{m1}}t/t_{_{\mathrm{H}}}$	$I_{m2}[1+(t_{\rm H}-t)/t_{\rm B}]$	

	Таблица	1 – У	равнения	токов і	и нап	ряжений	элементов	силовых	каналов
--	---------	-------	----------	---------	-------	---------	-----------	---------	---------

Индуктивность дросселя L_2 связана с индуктивностью L_1 обмотки W_1 соотношением [7, 8, 9]

 $L_2 = L_1 n_{21}^2; \qquad n_{21} = W_2 / W_1, \qquad I_{m1} = n_{21} I_{m2}.$ (5)

При анализе электрических процессов целесообразно в качестве исходных базовых параметров использовать следующие: в режиме слежения – коэффициент заполнения к₃, в режиме стабилизации – напряжение в цепи нагрузки U_н, поскольку последние однозначно являются исходными и заданными параметрами.

Рисунок 2 – Временные диаграммы токов дросселя $i_L(t)$ и силовых коммутирующих элементов: ключа $S1(i_{S1}(t))$, блокирующего диода $VD(i_{VD1}(t))$ и напряжения дросселя $u_L(t)$ при граничном режиме работы При импульсном методе регулирования на силовой ключ *S1* подаются с выхода схемы управления управляющие импульсы напряжения в общем случае с изменяющимися и длительностью $t_{\rm H}$, и коэффициентом заполнения κ_3 , и периодом $T_{\rm cy}$ (в отличие от [7, 8, 9], где при широтно-импульсном методе регулирования $T_{\rm cy}$ = const):

$$\kappa_3 = t_{\rm H} / T_{\rm cy} \tag{6}$$

Для однотактных типов схем СК (y = 1...5) период электрических процессов в дросселе выходного сглаживающего фильтра $T = T_{cy}$, для двухтактных (y = 6...8) – $T = 0.5T_{cy}$, ($\kappa_{\rm H}(t) = \kappa_3(t)$ – для однотактных СК, $\kappa_{\rm H}(t) = 2\kappa_3(t)$ – для двухтактных СК).

В течение интервала времени $0 \le t \le t_{\rm H}$, равного $t_{\rm H}$ – $(t_{\rm H} = t_{\rm H})$ рис. 2, силовой коммутирующий ключ S1 открыт. Ко входу силового дросселя преобразователя, к его первичной обмотке с индуктивностью L_1 и числом витков, равным W_1 , в течение интервала времени $0 \le t \le t_{\rm H}$ приложено напряжение $U_{L\rm H}$ (ключ S1 – идеален, падение напряжения на нем равно нулю). Это обеспечивает накопление электрической энергии в индуктивности L_1 обмотки W_1 дросселя сглаживающего фильтра. Для коэффициента накопления имеем

$$t_{\rm H} = t_{\rm H} / T, \qquad 0 \le \kappa_{\rm H} \le 1.$$
 (7)

Определим размах пульсаций тока дросселя на интервале накопления $0 \le t \le t_{\rm H}$ как:

$$I_{m1} = \frac{1}{L_1} \int_0^{\pi} u_L(t) dt = U_{LH} t_H / L_1 = U_{LH} \kappa_H T / L_1.$$
(8)

 $t_{_{\rm H}} < t \le T$ В интервале силовой времени коммутирующий S1 СК ключ преобразователя постоянного напряжения находится закрытом в непроводящем состоянии. Ко вторичной обмотке дросселя с индуктивностью L₂ и числом витков W₂ приложено напряжение U_{LB}

При этом накопленная дросселем на интервале времени $0 \dots t_{\rm H}$ энергия индуктивностью L_2 обмотки W_2 дросселя передается в цепь нагрузки $R_{\rm H}$ через блокирующий диод *VD1* в течение интервала времени $t_{\rm H} \dots (t_{\rm H} + t_{\rm R})$, равного $t_{\rm B}$, поэтому коэффициент возврата определим как

$$\kappa_{\rm B} = t_{\rm B} / T, \qquad \kappa_{\rm B} = 1 - \kappa_{\rm H}. \tag{9}$$

Обозначим суммарное время накопления и возврата энергии в дросселе как

$$T = t_{\rm H} + t_{\rm B}. \tag{10}$$

Определим размах пульсации тока дросселя на интервале возврата $t_{\rm H} \leq t \leq (t_{\rm H} + t_{\rm B})$, исходя из средних значений параметров:

$$I_{m2} = \frac{1}{L_2} \int_{t_{\rm H}}^{t_{\rm H}+t_{\rm B}} u_L(t) dt = U_{LB} t_{\rm B} / L_2 = U_{LB} \kappa_{\rm B} T / L_2 .$$
(11)

Определим среднее значения тока в цепи нагрузки $I_{\rm H}$ и тока $I_{\rm n}$, потребляемого от источника первичного электропитания.

Преобразователь потребляет от источника первичного электропитания ток $i_{n}(t)$. При этом, в зависимости от топологии преобразователя, энергия может потребляться либо только на интервале накопления, либо на интервалах накопления и возврата.

Учитывая топологию преобразователя с помощью коэффициентов F_{ну} и F_{ву}, получим

$$i_{\rm BX}(t) = i_{\rm II}(t) = \begin{cases} \kappa_{\rm Tp} i_{L\rm H}(t), & 0 \le t \le t_{\rm H}; \\ F_{\rm By} \kappa_{\rm Tp} i_{L\rm B}(t), & t_{\rm H} < t \le T. \end{cases}$$
(12)

Ток $I_{\rm n}$, потребляемый от источника электропитания, определим с учетом (12) и (6) как

$$I_{\Pi} = \frac{1}{T} \int_{0}^{T} i_{\Pi}(t) dt = \frac{1}{T} \int_{0}^{t_{\Pi}} \kappa_{Tp} \left(I_{m1} \frac{t}{t_{\Pi}} \right) dt + \frac{1}{T} \int_{t_{\Pi}}^{t_{\Pi}+t_{B}} F_{By} \kappa_{Tp} \left(I_{m2} \left(\frac{t_{\Pi}-t}{t_{B}} \right) \right) dt =$$

$$= \kappa_{\Pi} \kappa_{Tp} 0.5 I_{m1} + F_{By} \kappa_{B} \kappa_{Tp} 0.5 I_{m2} = 0.5 I_{m2} \kappa_{Tp} \left(\kappa_{\Pi} n_{21} + F_{By} \kappa_{B} \right).$$
(13)

Способ передачи энергии в нагрузку также зависит от топологии преобразователя. Учитывая топологию преобразователя с помощью коэффициентов $F_{\rm Hy}$ и $F_{\rm By}$, получим

$$i_{\rm Bblx}(t) = i_{\rm H}(t) = \begin{cases} F_{\rm Hy} i_{\rm LH}(t), & 0 \le t \le t_{\rm H}; \\ i_{\rm LB}(t), & t_{\rm H} < t \le T. \end{cases}$$
(14)

Среднее значение тока нагрузки $I_{\rm H} = U_{\rm H} / R_{\rm H}$ выразим через параметры тока дросселя:

$$I_{\rm H} = \frac{1}{T} \int_{0}^{T} i_{\rm H}(t) dt = \frac{1}{T} \int_{0}^{t_{\rm H}} F_{\rm Hy} \left[I_{m1} \frac{t}{t_{\rm H}} \right] dt + \frac{1}{T} \int_{t_{\rm H}}^{t_{\rm H}+t_{\rm B}} \left[I_{m2} \left(1 + \frac{t_{\rm H} - t}{t_{\rm B}} \right) \right] dt =$$

$$= F_{\rm Hy} \kappa_{\rm H} \left[I_{m1} / 2 \right] + \kappa_{\rm B} \left[I_{m2} / 2 \right].$$
(15)

Учитывая, что $I_{m1} = n_{21}I_{m2}$ и $\kappa_{\rm B} = 1 - \kappa_{\rm H}$, получим

$$I_{\rm H} = 0.5 \left[1 + \kappa_{\rm H} (F_{\rm Hy} n_{21} - 1) \right] I_{m2}; \qquad I_{m2} = \frac{2I_{\rm H}}{1 + \kappa_{\rm H} (F_{\rm Hy} n_{21} - 1)}.$$
(16)

На основании (8) и (11) с учетом (2), (5) определим напряжения на выходе СК рассматриваемых типов преобразователей в виде, представленном в табл. 2, в цепи нагрузки $U_{\rm H}$ и его относительное – нормированное значение $\overline{U}_{\rm H}$:

$$U_{\rm H} = U_{\rm BX} \frac{F_{\rm BY} + \kappa_{\rm H} (n_{21} - F_{\rm BY})}{1 + \kappa_{\rm H} (F_{\rm HY} n_{21} - 1)}, \qquad \overline{U}_{\rm H} = \frac{U_{\rm H}}{U_{\rm H}} = \frac{\left[F_{\rm BY} + \kappa_{\rm H} (n_{21} - F_{\rm BY})\right] U_{\rm BX}}{\left[1 + \kappa_{\rm H} (F_{\rm HY} n_{21} - 1)\right] U_{\rm H}}.$$
 (17)

Таблица 2 – Расчетные соотношения параметров электрических процессов СК

Наименование и		Режим слежения	
обозначение	Режим стабилизации		
параметра			
1	2	3	
Коэффициент	$(U_{\rm h} - F_{\rm by}U_{\rm bx})$	к ₃ при <i>y</i> = 1,, 5	
накопления, $\kappa_{\rm H} = t_{\rm H}/T$	$n_{21}(U_{\scriptscriptstyle \rm BX}-F_{\scriptscriptstyle \rm HY}U_{\scriptscriptstyle \rm H})+U_{\scriptscriptstyle \rm H}-F_{\scriptscriptstyle \rm BY}U_{\scriptscriptstyle \rm BX}$	$2\kappa_3$ при $y = 6,, 8$	
Коэффициент	$n_{21}(U_{_{\rm BX}} - F_{_{\rm HY}}U_{_{\rm H}})$	1	
возврата, $\kappa_{\rm B} = t_{\rm B}/T$	$\overline{n_{21}(U_{\rm bx}-F_{\rm Hy}U_{\rm h})+U_{\rm h}-F_{\rm by}U_{\rm bx}}$	$1 - K_{_{\rm H}}$	
Напряжение		$F_{\rm By} + \kappa_{\rm H} (n_{21} - F_{\rm By})$	
нагрузки, $U_{\rm H}$	U _H	$C_{\text{BX}} \overline{1 + \kappa_{\text{H}}(F_{\text{Hy}}n_{21} - 1)}$	
Границина значения	$R T U \left[U U - F U^2 - F U^2 \right]$	$R_{\rm H}T\kappa_{\rm H}\left[(1-\kappa_{\rm H})(1-\kappa_{\rm H}+F_{\rm Hy}\kappa_{\rm H}n_{21})\right]$	
L_1, L_{1rn}	$\frac{1}{2U}\left[\frac{1}{U}\left(n-F\right)+U\left(1-F\right)^{2}\right]^{2}$	$\frac{1}{2n_{21}[n_{21}\kappa_{\rm H} + (1-\kappa_{\rm H})F_{\rm By}]}$	
пр	$2O_{\rm H}[O_{\rm BX}(n_{21} - n_{\rm By}) + O_{\rm H}(1 - n_{\rm Hy}(n_{21}L))]$		
Граничные значения	$2L_1U_{\rm H}\left[U_{\rm BX}(n_{21}-F_{\rm By})+U_{\rm H}(1-F_{\rm Hy}n_{21L})\right]^2$	$2L_{r}n_{r} n_{r}\kappa_{r}+(1-\kappa_{r})F $	
$R_{\rm H}, R_{\rm urp}$	$\overline{TU_{_{BX}}U_{_{BX}}U_{_{H}}-F_{_{BY}}U_{_{BX}}^2-F_{_{HY}}U_{_{H}}^2}$	$\frac{2\Sigma_1 V_{21} V_{21} V_{41} + (\Gamma - K_H) \Gamma_{By}}{T_K (1 - \kappa)(1 - \kappa + F - \kappa n)}$	
		$\mathbf{x}_{\mathrm{H}}(\mathbf{x}_{\mathrm{H}})(\mathbf{x}_{\mathrm{H}} + \mathbf{z}_{\mathrm{By}}\mathbf{x}_{\mathrm{H}}^{\prime\prime}\mathbf{z}_{1})$	

1	2	2
1	2	3
Частота преобразования, <i>f</i>	$\frac{R_{\rm H}U_{\rm BX}[U_{\rm BX}U_{\rm H}-F_{\rm By}U_{\rm BX}^2-F_{\rm Hy}U_{\rm H}^2]}{2L_{\rm I}U_{\rm H}[U_{\rm BX}(n_{\rm 21}-F_{\rm By})+U_{\rm H}(1-F_{\rm Hy}n_{\rm 21L})]^2}$	$\frac{R_{_{\mathrm{H}}}\kappa_{_{\mathrm{H}}}\left[(1-\kappa_{_{\mathrm{H}}})(1-\kappa_{_{\mathrm{H}}}+F_{_{\mathrm{H}y}}\kappa_{_{\mathrm{H}}}n_{_{21}})\right]}{2L_{_{1}}n_{_{21}}\left[n_{_{21}}\kappa_{_{\mathrm{H}}}+(1-\kappa_{_{\mathrm{H}}})F_{_{\mathrm{B}y}}\right]}$
Период преобразования, Т	$\frac{2L_{1}U_{H}\left[U_{BX}(n_{21}-F_{BY})+U_{H}(1-F_{HY}n_{21L})\right]^{2}}{R_{H}U_{BX}\left[U_{BX}U_{H}-F_{BY}U_{BX}^{2}-F_{HY}U_{H}^{2}\right]}$	$\frac{2L_{1}n_{21}[n_{21}\kappa_{\rm H} + (1-\kappa_{\rm H})F_{\rm By}]}{R_{\rm H}\kappa_{\rm H}(1-\kappa_{\rm H})(1-\kappa_{\rm H}+F_{\rm By}\kappa_{\rm H}n_{21})}$
Размах пульс. тока в обм. W1, $I_{m1} = n_{21}I_{m2}$	$\frac{(U_{\rm H}U_{\rm bx} - F_{\rm by}U_{\rm bx}^2 - F_{\rm hy}U_{\rm H}^2)T}{[U_{\rm bx}(n_{21} - F_{\rm by}) + U_{\rm H}(1 - F_{\rm hy}n_{21})]L_1}$	$\frac{U_{_{\rm BX}}(1-\kappa_{_{\rm H}})\kappa_{_{\rm H}}T}{\left[1+\kappa_{_{\rm H}}(n_{21}F_{_{\rm Hy}}-1)\right]L_1}$
Размах пульс. тока в обмотке W_2 , $I_{m2} = I_{m1}/n_{21}$	$\frac{(U_{\rm H}U_{\rm bx} - F_{\rm by}U_{\rm bx}^2 - F_{\rm Hy}U_{\rm H}^2)T}{[U_{\rm bx}(n_{21} - F_{\rm by}) + U_{\rm H}(1 - F_{\rm Hy}n_{21})]n_{21}L_1}$	$\frac{U_{_{\rm BX}}(1-\kappa_{_{\rm H}})\kappa_{_{\rm H}}T}{\left[1+\kappa_{_{\rm H}}(F_{_{\rm Hy}}n_{_{21}}-1)\right]n_{_{21}}L_{_{1}}}$
Макс. ток ключа S1, I _{SI max}	$\frac{\kappa_{_{\rm TP}}(U_{_{\rm H}}U_{_{\rm BX}} - F_{_{\rm BY}}U_{_{\rm BX}}^2 - F_{_{\rm HY}}U_{_{\rm H}}^2)T}{[U_{_{\rm BX}}(n_{_{21}} - F_{_{\rm BY}}) + U_{_{\rm H}}(1 - F_{_{\rm HY}}n_{_{21}})]L_1}$	$\frac{\kappa_{_{\rm TP}}U_{_{\rm BX}}(1-\kappa_{_{\rm H}})\kappa_{_{\rm H}}T}{\left[1+\kappa_{_{\rm H}}(n_{_{21}}F_{_{\rm HY}}-1)\right]L_{_{1}}}$
Макс. ток блок. диода, I _{VD1max}	$\frac{(U_{\rm H}U_{\rm bx} - F_{\rm by}U_{\rm bx}^2 - F_{\rm Hy}U_{\rm H}^2)T}{[U_{\rm bx}(n_{21} - F_{\rm by}) + U_{\rm H}(1 - F_{\rm Hy}n_{21})]n_{21}L_1}$	$\frac{U_{_{\rm BX}}(1-\kappa_{_{\rm H}})\kappa_{_{\rm H}}T}{[1+\kappa_{_{\rm H}}(F_{_{\rm Hy}}n_{_{21}}-1)]n_{_{21}}L_{_{1}}}$
Средн. знач. тока нагрузки, I _н	I _н	$\frac{(1+\kappa_{\rm H}(F_{\rm Hy}n_{21}-1))U_{\rm BX}(1-\kappa_{\rm H})\kappa_{\rm H}T}{[1+\kappa_{\rm H}(F_{\rm Hy}n_{21}-1)]2n_{21}L_{\rm I}}$
Средн. знач. тока, потр. от ИПЭ, <i>I</i> _п	$\frac{\kappa_{\rm tp} U_{\rm h} I_{\rm h}}{U_{\rm bx}}$	$\frac{\kappa_{\rm Tp} (\kappa_{\rm H} n_{21} + F_{\rm By} \kappa_{\rm B}) U_{\rm BX} (1 - \kappa_{\rm H}) \kappa_{\rm H} T}{[1 + \kappa_{\rm H} (F_{\rm Hy} n_{21} - 1)] 2n_{21} L_{1}}$

Таблица 2 (окончание)

Соотношения $\overline{U}_{\rm H} = U_{\rm H}/U_{\rm n}$ как функции от коэффициента накопления $\kappa_{\rm H} = t_{\rm H}/T$ ($\kappa_{\rm H} -$ относительное время проводящего состояния силового коммутирующего ключа *S1*) являются регулировочными характеристиками преобразователей постоянного напряжения.

Приравнивая I_{m2} (соотношения (8) с (16)), преобразуя с учетом (2), (5), (9) и (12), получим граничные значения частоты f_{rp} и периода T_{rp} преобразования, индуктивности L_{1rp} обмотки W_1 дросселя и сопротивления $R_{H rp}$ в цепи нагрузки, при которых обеспечивается граничный режим работы с током дросселя на границе безразрывного и разрывного режимов:

$$f = f_{\rm rp} = \kappa_{\rm H} R_{\rm H} (1 - \kappa_{\rm H}) (1 - \kappa_{\rm H} + F_{\rm By} \kappa_{\rm H} n_{21}) / \left\{ 2L_{\rm I} n_{21} \left[n_{21} \kappa_{\rm H} + (1 - \kappa_{\rm H}) F_{\rm By} \right] \right\};$$

$$T = T_{\rm rp} = \left\{ 2L_{\rm I} n_{21} \left[n_{21} \kappa_{\rm H} + (1 - \kappa_{\rm H}) F_{\rm By} \right] \right\} / \left[\kappa_{\rm H} R_{\rm H} (1 - \kappa_{\rm H}) (1 - \kappa_{\rm H} + F_{\rm By} \kappa_{\rm H} n_{21}) \right];$$
(18)

$$L_{1} = L_{1rp} = \kappa_{\rm H} R_{\rm H} T \left[(1 - \kappa_{\rm H}) (1 - \kappa_{\rm H} + F_{\rm Hy} \kappa_{\rm H} n_{21}) \right] / \left\{ 2n_{21} \left[n_{21} \kappa_{\rm H} + (1 - \kappa_{\rm H}) F_{\rm By} \right] \right\};$$
(19)

$$R_{\rm H} = R_{\rm HFP} = 2L_1 n_{21} \left[n_{21} \kappa_{\rm H} + (1 - \kappa_{\rm H}) F_{\rm By} \right] / \left[(1 - \kappa_{\rm H}) (1 - \kappa_{\rm H} + F_{\rm By} \kappa_{\rm H} n_{21}) \kappa_{\rm H} T \right].$$
(20)

Используя (8) и (11), соотношения (2) с учетом (17) определим размахи I_{m1} и I_{m2} пульсаций токов соответственно в обмотках W_1 и W_2 дросселя в виде

$$I_{m1} = \frac{U_{\text{BX}}(1-\kappa_{\text{H}})}{\left[1+\kappa_{\text{H}}(n_{21}F_{\text{Hy}}-1)\right]} \frac{\kappa_{\text{H}}T}{L_{1}}, \qquad I_{m2} = \frac{U_{\text{BX}}(1-\kappa_{\text{H}})}{\left[1+\kappa_{\text{H}}(F_{\text{Hy}}n_{21}-1)\right]} \frac{\kappa_{\text{H}}T}{n_{21}L_{1}}.$$
(21)

Средние значения токов обмоток W_1 , W_2 , $W_1 \cup W_2$ соответственно I_{W1} , I_{W2} , $I_{W1} \cup W_2$, ключей S1, VD1 соответственно I_{S1} , I_{VD1} определим, интегрируя соответствующие выражения (табл. 1) [7]:

$$I_{W1} = \int_{0}^{T} i_{W1}(t)dt; \qquad I_{W2} = \int_{0}^{T} i_{W2}(t)dt; \qquad I_{W1\cup W2} = \int_{0}^{T} i_{W1\cup W2}(t)dt; \qquad (22)$$
$$I_{S1} = \int_{0}^{T} i_{S1}(t)dt; \qquad I_{VD1} = \int_{0}^{T} i_{VD1}(t)dt.$$

Расчетные соотношения полученной математической модели представлены в табл. 3.

Таблица 5 – Гасчетные соотношения средних значении токов элементов ск			
Параметр	Режим стабилизации	Режим слежения	
Среднее значение тока нагрузки, <i>I</i> _н	$0.5I_{m2}(1+\kappa_{\rm H}(F_{\rm Hy}n_{21}-1))$		
Среднее значение тока, потр. от ИПЭ., <i>I</i> _п	$0,5I_{m2}\kappa_{\mathrm{TP}}(\kappa)$	$_{\rm H}n_{21} + F_{\rm By}\kappa_{\rm B}$	
Среднее значение тока в обмотке W_1 , I_{wl}	0.51	$\kappa_{H}I_{m1}$	
Среднее значение тока в обмотке W_1 , I_{w2}	0.5	$\kappa_{\rm B}I_{m2}$	
Среднее значение тока в обмотке W_1 , $I_{w1 \cup W2}$	$(\kappa_{\scriptscriptstyle \rm H} I_{m1})$	$\frac{+\kappa_{\rm B}I_{m2}}{2}$	
Среднее значение тока ключа. S1, I _{SI}	0,5κ _т	${}_{\mathrm{p}}\kappa_{{}_{\mathrm{H}}}I_{m1}$	
Среднее значение тока блокировки диода, I_{VDI}	0,51	$\zeta_{\rm B}I_{m2}$	

Таблица 3 – Расчетные соотношения средних значений токов элементов СК

Определим действующие значения токов в элементах схемы.

Определим действующие значения токов обмоток дросселя $W_1, W_2, W_1 \bigcup W_2$, ключей S1, VD1 соответственно $I_{W_{1,\alpha}}, I_{W_{2,\alpha}}, I_{W_1} \bigcup W_{2,\alpha}$ [8]:

$$I_{W1\pi} = \sqrt{\frac{1}{T} \int_{0}^{T} i_{W1}^{2}(t) dt}; \qquad I_{W2\pi} = \sqrt{\frac{1}{T} \int_{0}^{T} i_{W2}^{2}(t) dt}; \qquad I_{W1\cup W2\pi} = \sqrt{\frac{1}{T} \int_{0}^{T} i_{W1\cup W2}^{2}(t) dt}.$$
(23)

Накопительный дроссель подключается к источнику питания либо непосредственно с помощью управляемого ключа S1, либо через разделительный трансформатор (y = 4, 6, ..., 8). В последнем случае последовательно со вторичной обмоткой трансформатора включается выпрямительный диод VD2. В этом случае действующий ток диода VD2 совпадает с действующим током обмотки накопления дросселя:

$$I_{VD2\,\pi} = I_{W1\,\pi} \,. \tag{24}$$

Действующий ток ключа S1 отличается от действующего тока VD2 на величину коэффициента трансформации к_{тр}:

$$I_{S1_{\mathcal{I}}} = \kappa_{\rm Tp} I_{VD2_{\mathcal{I}}}.$$
(25)

Соотношения (24) и (25) справедливы для любого типа силового канала, поскольку в схемах y = 1, 2, 3, 5, в которых трансформатор отсутствует, $\kappa_{\tau p}$ принимается равным 1. Действующие токи первичных ($I_{W_{\tau p1},\pi}$) и вторичных ($I_{W_{\tau p2},\pi}$) обмоток трансформаторов соответственно равны токам ключей *S*1 и *VD*2:

$$I_{W_{m1},A} = I_{S1,A}, \quad I_{W_{m2},A} = I_{VD2,A}.$$
 (26)

Для двухтактных схем (y = 6, 7, 8), в которых имеется несколько плечей для подключения трансформатора к источнику питания и дросселя к трансформатору значения, полученные в соотношениях (24)...(26), необходимо разделить на количество плечей.

Действующий ток, потребляемый от источника первичного электропитания ИПЭ, I_{nd} и действующее значение выходного тока силового канала I_{Bbixd} , и действующий ток выходного конденсатора I_{Ca} определяется соотношениями

$$I_{\rm BX, I} = \sqrt{\frac{1}{T} \int_{0}^{T} i_{\rm BX, I}^{2}(t) dt}; \ I_{\rm Bbix, I} = \sqrt{\frac{1}{T} \int_{0}^{T} i_{\rm Bbix, I}^{2}(t) dt}; \qquad I_{C_{\rm H}, I} = \sqrt{\frac{1}{T} \int_{0}^{T} i_{C_{\rm H}}^{2}(t) dt}.$$
(27)

Соотношения, полученные на основании (23) ... (27) представлены в табл. 4.

В режиме стабилизации известно напряжение на нагрузке $U_{\rm H}$ = const. На выходе импульсного модулятора формируется импульсный сигнал в общем случае также с изменяющимися коэффициентом заполнения к₃ и периодом *T*. При этом коэффициент заполнения к₃ и период *T* являются функцией от воздействий различных дестабилизирующих факторов (изменения напряжения $U_{\rm n}$ источника электропитания, тока $I_{\rm H}$ в цепи нагрузки, температуры окружающей среды и т.п.) формируется таким образом, чтобы обеспечить с заданной точностью напряжение $U_{\rm H}$ в цепи нагрузки постоянной

величины. В результате коэффициент накопления $\kappa_{\rm H}$ и период *T* являются функцией от многих переменных $\kappa_{\rm H} = f(U_{\rm H}, U_{\rm n}, R_{\rm H}, L_1, n_{21}), T = f(U_{\rm H}, U_{\rm n}, R_{\rm H}, L_1, n_{21}).$ Определим параметры $\kappa_{\rm H}, I_{ml}, I_{m2}, ...,$ характеризующие особенности электрических процессов рассматриваемых (рис. 2) преобразователей постоянного напряжения как функции $U_{\rm H}$ в виде, представленном в табл. 2. Переход к конкретной схеме преобразователя осуществляется подстановкой коэффициентов κ_3 , *T*, $U_{\rm n}$, $R_{\rm H}$, $\kappa_{\rm H}$ – в режиме слежения и *T*, $U_{\rm n}$, $R_{\rm H}$, $U_{\rm H}$ – в режиме стабилизации, в обобщенные соотношения табл. 2, которые учитывают специфику схемотехнической реализации преобразователя.

Параметр	Режим стабилизации	Режим слежения	
Действующий ток в обмотке $W1$, $I_{W1_{\mathcal{A}}}$	$I_{m2}n_{21}\sqrt{\kappa_{\scriptscriptstyle \rm B}/3}$		
Действующий ток в обмотке $W2$, $I_{W2, \pi}$	$I_{m2}\sqrt{\kappa_{_{\rm B}}/3}$		
Действ. ток общих витков W1 и W2, $I_{W1\cup W2,\pi}$	$I_{m2}\sqrt{(n_{21}^2\kappa_{\rm H}+\kappa_{\rm B})/3}$		
Действующий ток ключа S1, I _{S1 д}	$I_{m2}\kappa_{\rm TP}n_{21}\sqrt{\kappa_{\rm H}+I_{m2}^2/3}$		
Действующий ток диода VD1, I _{VD1 д}	$I_{m2}\sqrt{\kappa_{_{\rm B}}/3}$		
Действующий ток диода VD2, I _{VD2 д}	$I_{m2}n_{21}\sqrt{\kappa_{_{\rm H}}/3}$		
Действующий ток потребляемый от ИПЭ, I пд	$I_{m2}\kappa_{\rm Tp}\sqrt{(n_{21}^2\kappa_{\rm H}+F_{\rm By}\kappa_{\rm B})/3}$		
Действующий выходной ток, I _{вых д}	$I_{m2}\sqrt{(n_{21}^2F_{\rm Hy}\kappa_{\rm H}+\kappa_{\rm B})/3}$		
Действующий ток конденсатора $C_{\text{\tiny H}}, I_{C_{\text{\tiny H}},\text{\tiny I}}$	$\sqrt{I_{\rm bbixg}^2 + I_{\rm H}^2 - I_{\rm H}(n_{21})}$	$\overline{F_{_{\rm Hy}}\kappa_{_{\rm H}}+\kappa_{_{\rm B}})I_{_{m2}}}$	

$T_{0} \delta_{\Pi \Pi \Pi \Pi 0} A = D_{0} \delta_{\Pi 0} \delta_{\Pi 0} \delta_{\Pi 0} \delta_{\Pi 0}$	DOATHOHIAHHA HAŬATDUIAHHA	TOKOD DRAMAUTOD CV
1 аолица 4 - гасчетные о	оотношения деиствующих	TOKOB JUCMENTOB CIV

Рисунок 3 – Результаты моделирования на ЭВМ токов $i_L(t)$ при граничном режиме работы

Проверка полученных соотношений производилась аналитическим сравнением с моделями других авторов [1], ..., [6], а также моделированием различных схем (у) импульсных преобразователей с помощью специализированных программных пакетов.

Результаты сравнения действующего значения тока $I_{L_{A}}$ и аналогичного значения $I_{L_{A} MC8}$, полученного с помощью программы Micro-Cap 8 фирмы Spectrum Software, при различных режимах работы накопительного дросселя показали, что величина расхождения между результатами не превышает 1%.

Результаты сравнения с моделями других авторов [1 ... 6] полностью совпадают. На рис. 3, *а* приведены результаты моделирования на ЭВМ $i_L(t)$ в схеме понижающего типа с использованием $i_L(t)$ – соотношение (1) и зависимости $i_{L MCV}(t)$, полученной с использованием программы Micro-Cap V – разработки фирмы Spectrum Software. Расхождение результатов расчёта не превысило 0,5% (рис. 3,6 $-\Delta \bar{i}_L(t) = |i_L(t) - i_{LMCV}(t)|100/I_L$).

Таким образом, получены соотношения, которые позволяют определять параметры электрических процессов в силовых элементах преобразователей, обобщенные к восьми наиболее известным схемам преобразователей с граничным режимом работы накопительного дросселя. Использование данных соотношений повысит эффективность процесса разработки, решение задач анализа, автоматизированного исследования, синтеза и оптимизации преобразователей электрической энергии с использованием ЭВМ.

Полученные математические модели электрических процессов импульсных преобразователей постоянного напряжения являются обобщенными относительно восьми типов основных наиболее известных схем силовых каналов. Они позволяют проводить требуемые расчеты при решении задач исследования и проектирования. Одним из достоинств полученной обобщенной математической модели является возможность упрощения алгоритмов расчета на ЭВМ.

Литература

- 1. *Головацкий В.А.* Транзисторные импульсные усилители и стабилизаторы постоянного напряжения. М: Советское радио, 1974. 158 с.
- 2. Severns R., Bloom G. Modern DC-TO-DC Switch mode converter circuits. Van Nostraud Reinhold C., 1985.
- 3. *Моин В.С.* Стабилизированные транзисторные преобразователи. М: Энергоатомиздат, 1986 376 с.
- 4. *P.P.K. Ghetty Switch* mode power supply design TAB Books Inc., 1986.
- 5. Поликарпов А.Г., Сергиенко Е.Ф. Однотактные преобразователи напряжения в устройствах электропитания РЭА. М: Радио и связь, 1989. 160 с.
- 6. *Смольников Л.Е.* Транзисторные преобразователи напряжения: Учебное пособие для вузов; Под ред. А.А. Голикова.– М.: МЭИ, 1983.–224 с.
- 7. *Кадацкий А.Ф., Русу А.П.* Математическая модель электрических процессов в импульсных преобразователях постоянного напряжения с широтно-импульсным методом регулирования // Наукові праці ОНАЗ ім. О.С. Попова. 2004. №3. С. 10–16.
- 8. *Кадацкий А.Ф., Русу А.П.* Действующие значения токов элементов силовых каналов импульсных преобразователей постоянного напряжения с широтно-импульсным методом регулирования // Наукові праці ОНАЗ ім. О.С. Попова, 2005. №1. С.11 17.
- 9. *Кадацкий А.Ф., Русу А.П.* Анализ электрических процессов в импульсных преобразователях постоянного напряжения с широтно-импульсным методом регулирования // Электричество. 2005. № 5. С.43 54.