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Abstract. The presented paper investigates the problem of designing a learning system for agents in
intelligent game applications based on Unity Game Engine and reinforcement machine learning algorithms.
Modern trends in the game applications development are characterized by the active using of the concept of
an intelligent agent as a behavior model of an active element in various situations with applying various
strategies for interactions with other active elements and the environment. In recent years, there have been
a significant number of advances in this area, such as DeepMind and the Deep Q learning architecture, the
winning of the Go Game Champion with AlphaGo, OpenAl and PPO. Unity developers have implemented a
support for machine learning and, in particular, for deep reinforcement learning in order to create a deep
reinforcement learning the SDK (Software Development Kit) for game and simulation developers. With Unity
and ML-Agents toolkits we can create physically, visually, and cognitively rich environments, including ones
for evaluating new algorithms and strategies. However, learning system design for agents in Unity ML-
Agents is possible only by using the Python API. The possibility of a learning system design for agents in the
Flappy Bird game application based on the Unity Game Engine with using its own environment is discussed
in this paper. Separately, the paper highlights typical features of the Flappy Bird gaming application
environment. The environment can be implemented as a fully observable environment or a partially
observable environment. The fully observable environment is suggested to be used due to all environment
states in this case are seen in the playfield. Thus, the problem of strategy formation is considered as a
Markov decision-making process and the agent directly observes the current state of the environment.
Temporal Difference Learning is used as a learning method; it involves the assessment of a reward at each
stage. Two separate environments, deterministic and stochastic, have been implemented, that allows to
conduct further research and evaluation of strategy formation algorithms.

Key words: reinforcement learning, game application, Unity Game Engine, Flappy Bird, agent,
environment, action, strategy, decision making, Temporal Difference Learning, model-free.

AHoTauifn. Y cTaTTi po3rnafaeTbCs  3adada  NPOEeKTYBaHHA CUCTEMUM HaBYaHHS areHTiB B
iHTenekTyanbHUX irpoBux gogatkax Ha ocHosi Unity Game Engine i anroputmie MawwWHHOIO HaBYaHHSA 3
nigkpinneHHsMm. CyyacHi TeHOeHUii po3pobkm irpoBMX [oOaTKiB  XapakTepuayloTbCs  aKTVBHUM
BMKOPUCTaHHAM KOHUEMNUii iHTeNeKTyanbHOro areHTa sik mofgeni noBefiHKM akTUBHOMO €reMEHTY B Pi3HMX
CuTyaUisiX i3 3aCTOCYBaHHAM pPi3HOMaHITHUX CTpaTerin B3aemofii 3 iHWWMMW aKTUBHMMWU €efieMeHTaMu i
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cepepoBullieM. B ocTaHHi pokum MOXHa crocTepiraTM 3Ha4yHe 4YMCMO OOCATHEeHb B Ui obnacTi, Taki siK
DeepMind and the Deep Q learning architecture, nepemora yemnioHa rpu Go 3 AlphaGo, OpenAl i PPO.
Po3pobHukn npoaykTtiB Unity BnpoBagunv NigTPUMKY MAaLIMHHOIO HaBYaHHSA i, 30Kpema, rMMOUHHOro
HaBYaHHS 3 nigkpinneHHaM 3apagn cTtBopeHHA SDK, rmubuHHOro HaB4YaHHSA 3 MigKpinneHHsam ang
po3pobHukiB irop i cumynauii. Bukopuctosytoun Unity 11 iHcTpymeHTapii ML-Agents moxHa cTBOptoBaTH
i3n4HO, Bi3yarnbHO i KOTHITUBHO BGaraTi cepefoBULLLA OTOYEHHS, B TOMY YUCHIi | ANS OLHKN HOBMX anropuTMiB
i cTpaterin. lpoTe npoekTyBaHHA cucTemm HaByaHHA areHTiB B Unity ML-Agents MOXnvBO Tinbku 3
BMKopucTaHHam Python APIL. Y paHin ctaTTi BUBYAETbCA MOXIMBICTL MPOEKTYBAHHA CUCTEMU HaBYaHHS
areHTiB B irpoBomy gogatky Flappy Bird Ha ocHosi Unity Game Engine 3 MOXNMBICTIO CTBOPEHHS BIIaCHOrO
cepepoBulLa oToyeHHs. Okpemo B poboTi BuAineHi ocobGnMBOCTI, XapaKTepHi AN irpoBOro cepenoBuLLa
Flappy Bird. OTtoyeHHa Moxe ©OyTM peanisoBaHO $K cepefoBulle, WO MOBHICTIO abo 4acTKoBO
cnocTepiraeTbCcd. Y [OaHin cTaTTi NPOMOHYETbCS BMKOPUCTAHHS MOBHICTIO CMOCTEPEXYBAHOIO OTOYEHHS,
OCKiNbKM B LbOMY BWMNagKy BCi CTaHW cepefoBuvlla BWOHO Ha irpoBomy noni. Takum 4ymHOM, npobrnema
bopMyBaHHs1 cTpaTerii po3rnsgaeTbCs 5Kk MapkoOBCbKMIA NPOLIEC NMPUAHATTA pillEeHb i areHT 6e3nocepenHbo
crnocTepirae 3a NOTOYHUM CTaHOM HAaBKOMMULLHBOrO cepefosuila. Ak cnocib HaByaHHA OyB BMKOPUCTaHWUIA
Temporal Difference Learning, wo nepenbayae ouiHKy BUHAropoau Ha KoxHomy etani. Po3pobneHo aga
OKPEMUX CepefoBuULLA OTOYEHHS, OETEPMIHOBaHE i CTOXAaCTMYHe, WO A03BOSNSE€ MNpoBOAUTU nodarblui
OOCRIMDKEHHS N OUIHKW anropuTtmie ooOpMyBaHHSA cTpaTerin.

KnroyoBi cnoBa: HaB4aHHA 3 nigkpinneHHsMm, irposuin gogatok, Unity Game Engine, Flappy Bird,
areHT, OTOYEHHS, fis, CTaH, cTpaTeris, NpuAHATTA pileHb, Temporal Difference Learning, model-free.

AHHOTaumA. B ctatbe paccmaTtpuBaeTcs 3agadva NpoeKTUPOBaHMSA CUCTEMbl OBYy4YeHUs areHToB B
MHTEeNNeKTyanbHbIX WUrpoBbIX MPUNOXeHusx Ha ocHoBe Unity Game Engine v anroputMoB MalLWMHHOMO
obyyeHuss ¢ nogkpenneHvem. CoBpeMeHHble TeHAeHUuMn pas3paboTkM  UrPOBbIX  MPUMIOXKEHUN
XapakTepusyloTCcs akTUMBHbIM MCMOMNb30BaHMEM KOHLUEMUUM UHTENNEKTyanbHOro areHTa B KayecTBe Moaenu
MOBEeAEHWS aKTMBHOIO SMeMEeHTa B PasfUYHblX CUTyauusX C MpUMeHeHMeM pas3HooOpasHbiX CTpaTerui
B3aMMOAEWNCTBUS C OAPYrMMU aKkTUBHbIMU 3rieMeHTamu 1 cpegon. B nocnegHwe rogbl MOXHO Habnwopatb
3HauMTenbHOE 4YMCMNO AOCTWXKEHUMN B 3Tom obnactu, Takme kak DeepMind and the Deep Q learning
architecture, nobega yemnuoHa wurpel Go ¢ AlphaGo, OpenAl n PPO. PaspaboTtumku npogyktoB Unity
BHEOPWNV NOAAEPKKY MALLNMHHOIO 06y4eHNs 1, B 4aCTHOCTH, rMyOBUHHOro oByyeHns ¢ nogkpenneHvem pagu
co3gaHusa SDK rnyBuHHOro obyyeHus ¢ nogkpenneHnem ans paspaboTymkoB urp n cumynaumi. Mcnonb3ays
Unity n uHctpymeHTapun ML-Agents MoXHO co3gaBaTb (bu3MYeckn, BU3yanbHO U KOTHUTUBHO OGoraTtble
cpedbl OKPYXeHWs, B TOM YuCre M AN OLEHKN HOBbIX anropuTMoB 1 cTpaternii. OgHako npoekTnpoBaHue
cuctembl 00yyeHus areHToB B Unity ML-Agents BO3MOXHO Tonbko ¢ ncnonb3oBaHvem Python API. B gaHHoM
cTaTbe M3y4aeTCs BO3MOXHOCTb MPOEKTUPOBAHWUS CUCTEMbl OOYYEHUs areHTOB B UIPOBOM MNPUMOXKEHUN
Flappy Bird Ha ocHoBe Unity Game Engine ¢ BO3MOXHOCTbIO CO3aHunsi COOCTBEHHOWN Cpenbl OKPYXKEHUS.
OTtgenbHo B paboTe BblgeneHbl 0CO6EHHOCTU, XapakTepHble AN cpedbl MrpoBoro npunoxexus Flappy Bird.
OkpyxXeHne MOXeT ObITb peanus3oBaHO Kak NOMHOCTLI0 Habnwgaemasa unu YacTuyHo Habnwgaemas cpega.
B paHHoOM cTaTbe npegnaraeTcs MCNoNb3oBaHWe NOMHOCTBIO Habn4AEeMOro OKpyXXeHMUsl, MOCKOIbKY B 3TOM
cryyae BCe COCTOSIHWS Cpedbl BUAHbI Ha WrpoBoM nore. Takum obpasom, npobnema dopmmnpoBaHUS
cTpaTtermm paccmaTpuMBaeTCs Kak MapKOBCKMM MNPOLECC MPUHATUSA peLleHMn WU areHT HenocpencTBEHHO
HabnogaeT 3a TEKyWMM COCTOSIHMEM OKpyXarwwen cpeabl. B kadectBe cnocoba obyveHus Obin
ucnonb3oBaH Temporal Difference Learning, npegnonaratowimin OLEHKY BO3HArpaXKgeH1s Ha Kaxgom aTane.
Pa3spaboTaHbl ABe oTAenbHble cpedbl OKPYXXEeHWUs, 4ETEPMVHUPOBaHHAsA M CTOXacTuyeckas, no3sonsiowme
NpoBOANTL AanbHeNLMe NCCef0BaHNS U OLLEHKN anropuTMoB (DOPMMPOBaHNA CTpaTermi.

KnroueBble cnoBa: obyyeHve C nogkpenneHuem, urposoe npunoxenue, Unity Game Engine,
Flappy Bird, areHT, okpyxeHue, elCcTBUe, COCTOsiHUe, cTpaTerus, npuHaTue pewenun, Temporal Difference
Learning, model-free.

Every year there is more and more news about how artificial intelligence is superior to a
person in various gaming competitions. Gaming is changing now because sufficient computational
resources are finally available. However, there is a significant difference between artificial
intelligence and artificial behavior. In game development it is imperative that agents are as smart as
necessary for fun. Agents in games should not outsmart the players. The player's opponent must
imitate human behavior but not be perfect. In many cases, reinforcement training was applied. This
learning approach became very popular in the recent years. However, using only basic reinforcement
learning algorithms is not always sufficient for high-level gameplay. The research in the
reinforcement learning field is gaining huge momentum mostly thanks to Google Deepmind [1].
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Google Deepmind shows how Deep Learning can be used in conjunction with existing Reinforcement
Learning (RL) techniques to play Atari games [2], beat a world-class player in the game of Go, and
solve complicated riddles [3].

Autonomous agents can earn and take optimal actions in their assigned environment to
achieve certain goal. Agents play a key role in reinforcement learning. Understanding their
functioning is very crucial when there is a need to create own learning system or modify existing
one. This is a very common problem that covers tasks ranging from controlling a machine by a
robot, optimizing production processes, simulation, to learning to play board games and defeat the
world champions.

Game applications for decades have provided ideal conditions for training and testing the
performance of software agents for systems with artificial intelligence. But to teach an agent to
perform certain tasks takes time and computing power, which in turn leads to the choice of the
optimal algorithm for conserving resources.

Problem statement. This work describes the design process of the learning system for the
Flappy Bird game. Flappy Bird is a popular mobile game, and it was used as a simulation
environment. The main idea of this game is to maximize rewards by overcoming obstacles, which
reminds the main concept of the reinforcement learning [4, 5]. Flappy Bird is originally intended as
a game in which a player or agent can play endlessly. But the main concept remains to maximize
rewards by accumulating points for successfully completing obstacles. The task can be realized both
with an endless process of passing a level and with a final finish. The agent or player has only two
actions available: make a jump or do nothing in this way allowing a bird in the game to fall down
according to the laws of physics. The agent must interact with the environment to maximize the
reward received. The environment itself is fully observable. It means that the full state is visible on
the screen and it is fully accessible to the agent [5].

To train the agent and compare the effectiveness of learning methods in the future, two
versions of Flappy Bird were created. The first one represents a deterministic environment in which
game levels will not undergo changes after restarting the game. The second version represents a
stochastic environment that will change after each restart of the game. Using a stochastic and
deterministic environment at the same time allows the user to get more useful information about the
behavior of the agent. The environment is developed on the Unity Game Engine [6] with C# as the
main scripting language.

Reinforcement learning. Reinforcement Learning (RL) is a machine learning paradigm
which trains the policy of the agent, so that it can make a sequence of decisions. RL problems
involve learning what to do - how to map situations to actions to maximize a numerical reward
signal. Essentially, they are closed-loop problems because the learning system’s actions influence
its later inputs. Moreover, the learner is not told which actions to take, as in many forms of machine
learning, but instead must discover which actions yield the most reward by trying them out. In the
most interesting and challenging cases, actions may affect not only the immediate reward but also
the next situation and, through that, all subsequent rewards [7].

The agent learns to achieve a goal in an uncertain, potentially complex environment. In
reinforcement learning, an artificial intelligence faces a game-like situation. The computer employs
trial and error to come up with a solution to the problem. To get the machine to do what the
programmer wants, the artificial intelligence gets either rewards or penalties for the actions it
performs. Its goal is to maximize the total reward [8]. The main points of this process in more detail
will now be considered.

The learner and decision-maker are called the agent. Whatever it interacts with, comprising
everything outside the agent, is called the environment. These interact continually, the agent
selecting actions and the environment responding to those actions and presenting new situations to
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the agent. The environment also gives rise to rewards, special numerical values that the agent tries
to maximize over time. The complete specification of the environment defines a task, one instance
of the reinforcement learning problem.

The agent and environment interact at each of a sequence of discrete time steps, t =0, 1, 2,
3... . At each time step, the agent receives some representation of the environment's state, st € S,
where S is a set of possible states, and on that basis the agent selects an action, a; € A(St), where
A(Sy) is a set of actions available in state S:.

One-time step later, in part as a consequence of its action, the agent receives a numerical
reward, r+1 € R, and finds itself in a new state, St+1.Fig. 1 illustrates the agent-environment
interaction [7].

state reward action

J“I'_J' r/r

I

] .

St Environment
I .\‘_

Figure 1 — Agent-environment interaction

At each time step, the agent implements a mapping from states to probabilities of selecting
each possible action. This mapping is called the agent's policy and is denoted i, where m(s, a) is a
probability that a;=a if si=s. Reinforcement learning methods specify how the agent changes its
policy as a result of its experience. The agent's goal, roughly speaking, is to maximize the total
amount of reward it receives over the long run. This framework is abstract and flexible and can be
applied to many different problems in many ways.

In the context of video games, the agent that takes actions or performs a behavior is the
game agent. Thinking of a character or a bot in a game, it must understand the state of the game,
where the players are, and then, based on this observation, it should make a decision based on the
situation of the game. In RL, decisions are driven by rewards, which in a game could be provided as
a high score, or a new level for reaching a specific goal.

One of the main elements of reinforcement learning is a model of the environment. This
model predicts the behavior of this environment. As an example, an environment can use state and
action data and predict the outcome of this choice. As a result, this will be the next state and reward.
This approach is used for planning. The planning means any kind of decision making that covers
every possible space of future situations before any of this occurs. In reinforcement learning,
methods that use planning and models are called model-based algorithms [9]. Model-free are the
opposite of model-based methods. These methods explicitly use a trial-and-error approach [10].
Thus, model-free algorithms allow the agent to interact with an unknown environment and make
exploration of it.

Flappy Bird learning system design. Each learning system must have a specific
environment. Choosing a gaming environment is an economical option in which anything can be
simulated without spending more resources than needed.

Learning can be considered as a process that includes improving the performance of the
original system relative to some task based on the experience gained. Then, in the developed
system, the following key points will be considered as the first steps: choosing task T; choosing
training experience E; choosing performance measure P.
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The task for the agent is to live as long as possible by avoiding collisions and moving
through gaps/spaces between the pipes. The agent should not touch the upper or lower border of the
screen, and it is also necessary to avoid collisions with objects in the game.

The position of the agent is in the middle of the X-axis, it has only two possible actions: do
nothing or perform a jump (flap). By doing nothing the bird will fall down.

Any problem with the learning agent results in a credit assignment problem. An agent may
make optimally correct decisions, but in the end, the result will be unacceptable. Often this may
also involve a trade-off between instant reward and long-term reward. This issue concerns indirect
learning. Flappy Bird game is more about indirect learning, where learning goes via trial-and-error
experience and does not use labeled data.

Whether it is a terminal or non-terminal environment, an agent can collect and use data for
its learning. In case of the terminal environment with Q-Learning and SARSA approaches for
Flappy Bird, the experience will be stored in the Q-table.

In the designed learning system, each time step number represents a state, and there are two
columns for actions. Each action for certain state has a Q-value. When the agent is about to exploit
the environment and to pick an action, being at some certain state, it picks an action with the
maximum Q. An example of this Q-table is shown in Table 1.

Table 1 — «Q-table data» example

State «t step No» | Action «Do Nothing» Action «Dumpy»
0 0 2,839
1 0 9,917
2 -800 40,98

Experience data for Flappy Bird in the non-terminal environment will be different. In this
case the environment is not deterministic anymore. An episode can last forever, and objects will be
spawning randomly. The simple use of the Q-table is no longer acceptable because the data will be
useless. The second approach uses neural networks for training and behavior, and one of the main
features which is in use is Replay Memory.

In the designed approach the state consists of some state attributes: horizontal distance
between the bird and a next pipe; bird velocity; vertical distance between the bird and a top pipe;
vertical distance between the bird and a bottom pipe.

For the neural network, there will be one neuron per each state attribute in the input layer.
The replay memory collects the states and rewards for transition each time step. This data can be
used for training each time step or it can wait until the end of the episode. In this case training data
will have the following view:

Table 2 — «Replay Memory» data samples

State attr. 1 State attr. 2 State attr. 3 State attr. 4 Reward
-3,1195824146 0,9912981986 2,1912982463 1,6961996555 0,01
-3,1784424781 1,0548670291 32,2548670768 1,6466000080 0,01
-3,2373025417 1,1196130514 2,3196130990 1,6466000080 0,01
-3,2961626052 1,1855362653 2,3855363130 1,5968996286 0,01
-3,3550226688 1,2526366710 2,4526367187 1,5968996286 -1

In the case of Flappy Bird , it depends on the task, since the developer can choose the rules
in the environment. For example, levels may be fixed, or levels may be randomly generated for
each episode. The only dependent factor is which kind of episodes is in the game. They can either
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have terminal states at the end, or the level can be infinite. The first case is about episodic tasks, the
second is associated with continuous tasks. There will be no terminal states in the system being
developed, so the task can be considered as continuous. The cumulative reward and the number of
iterations will serve as a performance measure.

Reinforcement Learning Algorithms. The next step is choosing a target function in the
learning system. After comparing algorithms, it was decided to use the most suitable method for
this task — Temporal Difference Learning.

Model-free algorithms estimate the policy or a value function through trial-and-error
experience. There are two planning problem types: prediction and control. A prediction problem
can be solved with next approaches [7]: Monte-Carlo Learning; Temporal Difference Learning.

Monte Carlo (MC) refers to algorithms without a model [7]. Since the agent is not aware of
the environment dynamics, greedy acting would not guarantee 100% success in getting a correct
optimal policy. The agent can stick at some point and the goal will be unreachable, or the value of
the total reward might have been much bigger.

The Temporal Difference Learning (TD) approach is inspired by Monte Carlo and Dynamic
Programming ideas [11]. TD learning can be done via experience of the episodes, like in Monte
Carlo. It solves a prediction problem. As in the Dynamic Programming, TD learning uses
bootstrapping for updating values. Since this is a model-free algorithm, it requires no model of the
environment.

Unlike the previous method, in the Temporal Difference methods, direct learning takes place
on incomplete episodes [11]. For example, an agent may be taught after each action that has been
performed and received feedback from the environment immediately, rather than waiting for the
end of the episode. Algorithms of this kind work well with continuous tasks. But, regardless of this,
it is also possible to work with episodic tasks. As a reminder, the episodic tasks do have an end
state, whereas continuously tasks episodes can last forever or until the goal is succeeded or failed.
TD learning updates the value function each time step and does not wait for the end of the episode.
This allows agent to learn immediately without waiting of the outcome, like MC algorithm does.
Therefore, TD learning can be applied in non-terminating environments.

TD learning methods planning algorithms are divided by off-policy and on-policy types.

SARSA (state-action-reward-state-action) is an on-policy algorithm., that learns MDP
policy. In this algorithm, actions depend on the current policy. This means the implementation of
actions at and at+1 will be performed using the current policy 7.

Q is a quality function for state and action pairs:

Q:S-A>R. (1)

Consider the abbreviation of the algorithm, where each letter (word) corresponds to a
parameter of the function for updating the Q-value, which is calculated as follows:

Q(s:.a,) < Q5. 8) +offy +7Q(Se, ) —Q(S:,)], (2)
where St - current state;
At - current action;
Rt+1 — reward for performed action Ay;
St+1 — next state;
At+1 — next action;
a — learning rate;
y — discount rate.
Every time step includes:
1) policy evaluation with estimating Q; and
2) policy improvement with the e-greedy strategy.
e-greedy algorithm is used for choosing an action with respect to the exploration-
exploitation:
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1) initialize € variable;

2) generate a random value between 0 and 1; that would be r € [0,1]; and

3) if r is lesser than g, then an action would be random; or

4) else an action will be selected according to the one with the maximum Q with respect to
the specific state.

Q-Learning is an off-policy control algorithm, which uses action-value function Q to
improve the behavior of the agent. This iterative improvement can be done with use of the Bellman
equation. Q stands for the quality as it is working out what the quality of performing a certain action
is. While an agent is in a certain state S at time step t, then the quality of performing action in this
state is equal to the maximum reward, obtained in the future:

Q"™(Si,A) = QS A) + Ry +7-maxQ(S,.1, A) ~Q(S,. A)), 3)
where Q(S,, A) - old value;
Rt+1 — reward;
max Q(S,,,, A) —an estimate of optimal future value.

The Bellman equation states the maximum future reward for a specific state and action. The
agent is not aware of the reward until an action is executed during a specific state. Only after, the
agent can rely only on historic data. One way to store Q-values is the Q-Table.

In this work, Q-Learning as TD extension and SARSA were used as main methods, which
can help with the continuous and episodic tasks. Both methods can be extended to the neural
network solution. Also, the agent can learn in an unknown environment after each time step in the
episode.

Environment development. In this work, the environment for interacting with the agent is
provided by the Unity game engine. In addition, Unity provides the visual development
environment, cross-platform support, and a modular component system, Unity also includes useful
libraries related to machine learning and intelligent agents.

This game engine was used to create a game application as an environment and for writing
the necessary logics for an agent providing a unique solution. The advantages of this approach can
also be identified as the ability to control all aspects of the environment and agent’s functioning, the
ability to expand functionality and make adjustments. Also, experience with this engine and its
programming language (C#) has a positive effect on the stages of application development,
algorithms implementation, and their evaluation.

The environment for the agent is seen as an interactive game. The main window for the
development and testing of the project is presented in Fig. 2.

Figure 2 — Main windw for developing and testng
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Three areas are selected on the figure: main objects of the unity project (hierarchy area); the
root folder of the project with all subfolders, scripts, files etc.; and the game screen, where the
testing itself is shown.

In terms of the paper two environments were created. The first environment is a
deterministic environment with specific rules: obstacles/pipes are fixed and have a limited quantity;
the terminal end state is at the end; the tabular version of algorithms Q-Learning and SARSA is
used (it means that Q-Learning and SARSA store Q-values in the Q-Table); different design and
implementation.

The second environment is a stochastic environment with the following differences: it
contains four levels with different difficulty; objects/pipes have sequential order and they looped
(this is scene #1 with some deterministic conditions, but it can last forever until the agent has
failed); it contains scene #2 with the objects/pipes that appear randomly (the agent can perform the
task in maximizing a reward continuously, unless failure).

The following rules are defined in deterministic environment:

— the bird is stationary on the x-axis, but actions to jump or do nothing can change the
position on the x-axis;

— in the game there are obstacles/pipes that move/scroll to the left side along the x-axis;

— the agent’s goal is to go through the gaps in between in pipe pairs until the terminal state is
reached,

— a certain amount of the reward that is added at each step is accumulated;

— in addition to moving obstacles, a bird/agent cannot touch the upper or lower boundaries;
and

if the agent/bird hits any obstacle, then the game will be lost and completely restarted.

The hierarchy of objects is as follows: Canvas - contains Ul game object elements (it
contains a camera for displaying the game screen); Score — Ul element, uses TextMeshPro
component for displaying a game score; Top — represents the top border with collisions; Main
Camera - displays the game screen; Bird — represents a bird (controlled by the agent), contains a
bird and agent scripts (Bird.cs, Agent.cs), and has a tag «Player»; Scrolling — contains objects,
which represent a bottom border collision, bottom sprites and a background, contains attached
scripts (ScrollingObject.cs), is responsible for managing these contained objects; Ground object,
which represents a bottom border and has a tag «Ground»; Cols - this object contains a
pipe/obstacle pairs, each pair has a fixed position and an attached script (Columns.cs), one pair of
the pipes is labeled as the terminal end state, each pair has a tag «pipe».

Stochastic environment was developed as a separate application so that the projects would
not be mixed. The environment is divided into two scenes. Scene «Looping Scene» consists of fixed
levels. The terminal state is not considered since the levels were designed so that after passing a
specific object, they change their positions in order to loop. This approach was developed to train
the agent gradually with increasing complexity. Scene «Random Scene» consists of obstacles that
spawn on random positions. There are four pipe/obstacle pairs where each pair consists of one pipe
at the top and one pipe at the bottom. The main logic is that each time an agent passes one of them
(pipe/obstacle pairs), this object will be generated at the end with a random position in each range.
Each of the two scenes has characteristic equally main object. Unit — represents a collection of
objects. One of the most important is the bird object which is basically an agent. Other is «PipeSet»
which represents the moving obstacles. To implement moving objects, two scripts were written:
Pipeset.cs, Pipes.cs.

Pipeset.cs class responds for the set of pipes (obstacles). On the scene, there two pipe
objects with a gap between. This is considered as an obstacle, and the pipeset includes many of
these object pairs. The agent’s goal is to find this gap and go through it.
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Pipes.cs class represents each pair of the pipe obstacles. This component is attached to each
object, which is a set of these obstacles. Methods are responsible for randomizing obstacle
positions, and they also are capable to assign their initial positions and responsible for the
movement.

The main logic of the environment is that the agent’s object itself does not move along the
x-axis, while obstacles move along the negative abscissa. The ordinate axis is allocated to the agent.
If the action does not occur, then, according to the laws of physics, the agent’s object moves down.
But if the agent decides to take a jump, then one will rise with force up. Thus, one of the tasks is to
balance in the given environment, and the other is to get into the passable area. All this can be
reduced to the goal of not hitting any of the obstacles and finding the most optimal actions for this,
based on experience.

Some of the most successful examples of reinforcement learning are in the field of
developing agents for games. Agent and environment are core concepts of reinforcement learning.
The agent interacts to maximize the cumulative reward. The agent has a policy that represents one’s
behavior or decision strategy. The environment can be implemented as a fully observable
environment or a partially observable environment. In this report, a fully observable environment
was selected since in this case all the complete states of this environment are visible on screen and
everything is under control of the agent. Environments of this type use Markov decision processes.
The main problem is to find an optimal policy. Finding optimal policy is basically the planning
problem and consists of prediction and control.

In this paper, model-free methods are found to be more suitable for the Flappy Bird problem
due to unknown environments. To solve the planning problem, Temporal Difference Learning
methods were selected since TD methods are able to perform in the terminal and non-terminal
environments. Two separate environments were created for further research and evaluation of
algorithms. As future work, Deep Q Learning and Deep SARSA algorithms should be
implemented.
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