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Abstract. The presented paper investigates the problem of designing a learning system for agents in 
intelligent game applications based on Unity Game Engine and reinforcement machine learning algorithms. 
Modern trends in the game applications development are characterized by the active using of the concept of 
an intelligent agent as a behavior model of an active element in various situations with applying various 
strategies for interactions with other active elements and the environment. In recent years, there have been 
a significant number of advances in this area, such as DeepMind and the Deep Q learning architecture, the 
winning of the Go Game Champion with AlphaGo, OpenAI and PPO. Unity developers have implemented a 
support for machine learning and, in particular, for deep reinforcement learning in order to create a deep 
reinforcement learning the SDK (Software Development Kit) for game and simulation developers. With Unity 
and ML-Agents toolkits we can create physically, visually, and cognitively rich environments, including ones 
for evaluating new algorithms and strategies. However, learning system design for agents in Unity ML-
Agents is possible only by using the Python API. The possibility of a learning system design for agents in the 
Flappy Bird game application based on the Unity Game Engine with using its own environment is discussed 
in this paper. Separately, the paper highlights typical features of the Flappy Bird gaming application 
environment. The environment can be implemented as a fully observable environment or a partially 
observable environment. The fully observable environment is suggested to be used due to all environment 
states in this case are seen in the playfield. Thus, the problem of strategy formation is considered as a 
Markov decision-making process and the agent directly observes the current state of the environment. 
Temporal Difference Learning is used as a learning method; it involves the assessment of a reward at each 
stage. Two separate environments, deterministic and stochastic, have been implemented, that allows to 
conduct further research and evaluation of strategy formation algorithms. 

Key words: reinforcement learning, game application, Unity Game Engine, Flappy Bird, agent, 
environment, action, strategy, decision making, Temporal Difference Learning, model-free. 

 
Анотація. У статті розглядається задача проектування системи навчання агентів в 

інтелектуальних ігрових додатках на основі Unity Game Engine і алгоритмів машинного навчання з 
підкріпленням. Сучасні тенденції розробки ігрових додатків характеризуються активним 
використанням концепції інтелектуального агента як моделі поведінки активного елементу в різних 
ситуаціях із застосуванням різноманітних стратегій взаємодії з іншими активними елементами і 
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середовищем. В останні роки можна спостерігати значне число досягнень в цій області, такі як 
DeepMind and the Deep Q learning architecture, перемога чемпіона гри Go з AlphaGo, OpenAI і PPO. 
Розробники продуктів Unity впровадили підтримку машинного навчання і, зокрема, глибинного 
навчання з підкріпленням заради створення SDK, глибинного навчання з підкріпленням для 
розробників ігор і симуляцій. Використовуючи Unity й інструментарій ML-Agents можна створювати 
фізично, візуально і когнітивно багаті середовища оточення, в тому числі і для оцінки нових алгоритмів 
і стратегій. Проте проектування системи навчання агентів в Unity ML-Agents можливо тільки з 
використанням Python API. У даній статті вивчається можливість проектування системи навчання 
агентів в ігровому додатку Flappy Bird на основі Unity Game Engine з можливістю створення власного 
середовища оточення. Окремо в роботі виділені особливості, характерні для ігрового середовища 
Flappy Bird. Оточення може бути реалізовано як середовище, що повністю або частково 
спостерігається. У даній статті пропонується використання повністю спостережуваного оточення, 
оскільки в цьому випадку всі стани середовища видно на ігровому полі. Таким чином, проблема 
формування стратегії розглядається як марковський процес прийняття рішень і агент безпосередньо 
спостерігає за поточним станом навколишнього середовища. Як спосіб навчання був використаний 
Temporal Difference Learning, що передбачає оцінку винагороди на кожному етапі. Розроблено два 
окремих середовища оточення, детерміноване і стохастичне, що дозволяє проводити подальші 
дослідження й оцінки алгоритмів формування стратегій. 

Ключові слова: навчання з підкріпленням, ігровий додаток, Unity Game Engine, Flappy Bird, 
агент, оточення, дія, стан, стратегія, прийняття рішень, Temporal Difference Learning, model-free. 

 
Аннотация. В статье рассматривается задача проектирования системы обучения агентов в 

интеллектуальных игровых приложениях на основе Unity Game Engine и алгоритмов машинного 
обучения с подкреплением. Современные тенденции разработки игровых приложений 
характеризуются активным использованием концепции интеллектуального агента в качестве модели 
поведения активного элемента в различных ситуациях с применением разнообразных стратегий 
взаимодействия с другими активными элементами и средой. В последние годы можно наблюдать 
значительное число достижений в этой области, такие как DeepMind and the Deep Q learning 
architecture, победа чемпиона игры Go с AlphaGo, OpenAI и PPO. Разработчики продуктов Unity 
внедрили поддержку машинного обучения и, в частности, глубинного обучения с подкреплением ради 
создания SDK глубинного обучения с подкреплением для разработчиков игр и симуляций. Используя 
Unity и инструментарий ML-Agents можно создавать физически, визуально и когнитивно богатые 
среды окружения, в том числе и для оценки новых алгоритмов и стратегий. Однако проектирование 
системы обучения агентов в Unity ML-Agents возможно только с использованием Python API. В данной 
статье изучается возможность проектирования системы обучения агентов в игровом приложении 
Flappy Bird на основе Unity Game Engine c возможностью создания собственной среды окружения. 
Отдельно в работе выделены особенности, характерные для среды игрового приложения Flappy Bird. 
Окружение может быть реализовано как полностью наблюдаемая или частично наблюдаемая среда. 
В данной статье предлагается использование полностью наблюдаемого окружения, поскольку в этом 
случае все состояния среды видны на игровом поле. Таким образом, проблема формирования 
стратегии рассматривается как марковский процесс принятия решений и агент непосредственно 
наблюдает за текущим состоянием окружающей среды. В качестве способа обучения был 
использован Temporal Difference Learning, предполагающий оценку вознаграждения на каждом этапе. 
Разработаны две отдельные среды окружения, детерминированная и стохастическая, позволяющие 
проводить дальнейшие исследования и оценки алгоритмов формирования стратегий. 

Ключевые слова: обучение с подкреплением, игровое приложение, Unity Game Engine, 
Flappy Bird, агент, окружение, действие, состояние, стратегия, принятие решений, Temporal Difference 
Learning, model-free. 

 

Every year there is more and more news about how artificial intelligence is superior to a 

person in various gaming competitions. Gaming is changing now because sufficient computational 

resources are finally available. However, there is a significant difference between artificial 

intelligence and artificial behavior. In game development it is imperative that agents are as smart as 

necessary for fun. Agents in games should not outsmart the players. The player's opponent must 

imitate human behavior but not be perfect. In many cases, reinforcement training was applied. This 

learning approach became very popular in the recent years. However, using only basic reinforcement 

learning algorithms is not always sufficient for high-level gameplay. The research in the 

reinforcement learning field is gaining huge momentum mostly thanks to Google Deepmind [1]. 
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Google Deepmind shows how Deep Learning can be used in conjunction with existing Reinforcement 

Learning (RL) techniques to play Atari games [2], beat a world-class player in the game of Go, and 

solve complicated riddles [3]. 

Autonomous agents can earn and take optimal actions in their assigned environment to 

achieve certain goal. Agents play a key role in reinforcement learning. Understanding their 

functioning is very crucial when there is a need to create own learning system or modify existing 

one. This is a very common problem that covers tasks ranging from controlling a machine by a 

robot, optimizing production processes, simulation, to learning to play board games and defeat the 

world champions. 

Game applications for decades have provided ideal conditions for training and testing the 

performance of software agents for systems with artificial intelligence. But to teach an agent to 

perform certain tasks takes time and computing power, which in turn leads to the choice of the 

optimal algorithm for conserving resources. 

 

Problem statement. This work describes the design process of the learning system for the 

Flappy Bird game. Flappy Bird is a popular mobile game, and it was used as a simulation 

environment. The main idea of this game is to maximize rewards by overcoming obstacles, which 

reminds the main concept of the reinforcement learning [4, 5]. Flappy Bird is originally intended as 

a game in which a player or agent can play endlessly. But the main concept remains to maximize 

rewards by accumulating points for successfully completing obstacles. The task can be realized both 

with an endless process of passing a level and with a final finish. The agent or player has only two 

actions available: make a jump or do nothing in this way allowing a bird in the game to fall down 

according to the laws of physics. The agent must interact with the environment to maximize the 

reward received. The environment itself is fully observable. It means that the full state is visible on 

the screen and it is fully accessible to the agent [5]. 

To train the agent and compare the effectiveness of learning methods in the future, two 

versions of Flappy Bird were created. The first one represents a deterministic environment in which 

game levels will not undergo changes after restarting the game. The second version represents a 

stochastic environment that will change after each restart of the game. Using a stochastic and 

deterministic environment at the same time allows the user to get more useful information about the 

behavior of the agent. The environment is developed on the Unity Game Engine [6] with C# as the 

main scripting language. 

Reinforcement learning. Reinforcement Learning (RL) is a machine learning paradigm 

which trains the policy of the agent, so that it can make a sequence of decisions. RL problems 

involve learning what to do - how to map situations to actions to maximize a numerical reward 

signal. Essentially, they are closed-loop problems because the learning system’s actions influence 

its later inputs. Moreover, the learner is not told which actions to take, as in many forms of machine 

learning, but instead must discover which actions yield the most reward by trying them out. In the 

most interesting and challenging cases, actions may affect not only the immediate reward but also 

the next situation and, through that, all subsequent rewards [7]. 

The agent learns to achieve a goal in an uncertain, potentially complex environment. In 

reinforcement learning, an artificial intelligence faces a game-like situation. The computer employs 

trial and error to come up with a solution to the problem. To get the machine to do what the 

programmer wants, the artificial intelligence gets either rewards or penalties for the actions it 

performs. Its goal is to maximize the total reward [8]. The main points of this process in more detail 

will now be considered. 

The learner and decision-maker are called the agent. Whatever it interacts with, comprising 

everything outside the agent, is called the environment. These interact continually, the agent 

selecting actions and the environment responding to those actions and presenting new situations to 
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the agent. The environment also gives rise to rewards, special numerical values that the agent tries 

to maximize over time. The complete specification of the environment defines a task, one instance 

of the reinforcement learning problem. 

The agent and environment interact at each of a sequence of discrete time steps, t = 0, 1, 2, 

3… . At each time step, the agent receives some representation of the environment's state, st  S, 

where S is a set of possible states, and on that basis the agent selects an action, at  A(St), where 

A(St) is a set of actions available in state St. 

One-time step later, in part as a consequence of its action, the agent receives a numerical 

reward, rt+1  R, and finds itself in a new state, St+1.Fig. 1 illustrates the agent-environment 

interaction [7]. 

 
Figure 1 – Agent-environment interaction 

 

At each time step, the agent implements a mapping from states to probabilities of selecting 

each possible action. This mapping is called the agent's policy and is denoted πt, where πt(s, a) is a 

probability that at=a if st=s. Reinforcement learning methods specify how the agent changes its 

policy as a result of its experience. The agent's goal, roughly speaking, is to maximize the total 

amount of reward it receives over the long run. This framework is abstract and flexible and can be 

applied to many different problems in many ways. 

In the context of video games, the agent that takes actions or performs a behavior is the 

game agent. Thinking of a character or a bot in a game, it must understand the state of the game, 

where the players are, and then, based on this observation, it should make a decision based on the 

situation of the game. In RL, decisions are driven by rewards, which in a game could be provided as 

a high score, or a new level for reaching a specific goal.   

One of the main elements of reinforcement learning is a model of the environment. This 

model predicts the behavior of this environment. As an example, an environment can use state and 

action data and predict the outcome of this choice. As a result, this will be the next state and reward. 

This approach is used for planning. The planning means any kind of decision making that covers 

every possible space of future situations before any of this occurs. In reinforcement learning, 

methods that use planning and models are called model-based algorithms [9]. Model-free are the 

opposite of model-based methods. These methods explicitly use a trial-and-error approach [10]. 

Thus, model-free algorithms allow the agent to interact with an unknown environment and make 

exploration of it. 

Flappy Bird learning system design. Each learning system must have a specific 

environment. Choosing a gaming environment is an economical option in which anything can be 

simulated without spending more resources than needed. 

Learning can be considered as a process that includes improving the performance of the 

original system relative to some task based on the experience gained. Then, in the developed 

system, the following key points will be considered as the first steps: choosing task T; choosing 

training experience E; choosing performance measure P.  
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The task for the agent is to live as long as possible by avoiding collisions and moving 

through gaps/spaces between the pipes. The agent should not touch the upper or lower border of the 

screen, and it is also necessary to avoid collisions with objects in the game.  

The position of the agent is in the middle of the X-axis, it has only two possible actions: do 

nothing or perform a jump (flap). By doing nothing the bird will fall down. 

Any problem with the learning agent results in a credit assignment problem. An agent may 

make optimally correct decisions, but in the end, the result will be unacceptable. Often this may 

also involve a trade-off between instant reward and long-term reward. This issue concerns indirect 

learning. Flappy Bird game is more about indirect learning, where learning goes via trial-and-error 

experience and does not use labeled data. 

Whether it is a terminal or non-terminal environment, an agent can collect and use data for 

its learning. In case of the terminal environment with Q-Learning and SARSA approaches for 

Flappy Bird, the experience will be stored in the Q-table.  

In the designed learning system, each time step number represents a state, and there are two 

columns for actions. Each action for certain state has a Q-value. When the agent is about to exploit 

the environment and to pick an action, being at some certain state, it picks an action with the 

maximum Q. An example of this Q-table is shown in Table 1. 

 

Table 1 – «Q-table data» example 

State «t step №» Action «Do Nothing» Action «Dump» 

0 0 2,839 

1 0 9,917 

2 -800 40,98 

 

Experience data for Flappy Bird in the non-terminal environment will be different. In this 

case the environment is not deterministic anymore. An episode can last forever, and objects will be 

spawning randomly. The simple use of the Q-table is no longer acceptable because the data will be 

useless. The second approach uses neural networks for training and behavior, and one of the main 

features which is in use is Replay Memory. 

In the designed approach the state consists of some state attributes: horizontal distance 

between the bird and a next pipe; bird velocity; vertical distance between the bird and a top pipe; 

vertical distance between the bird and a bottom pipe.  

For the neural network, there will be one neuron per each state attribute in the input layer. 

The replay memory collects the states and rewards for transition each time step. This data can be 

used for training each time step or it can wait until the end of the episode. In this case training data 

will have the following view: 

 

Table 2 – «Replay Memory» data samples 

State attr. 1 State attr. 2 State attr. 3 State attr. 4 Reward 

-3,1195824146 0,9912981986 2,1912982463 1,6961996555 0,01 

-3,1784424781 1,0548670291 32,2548670768 1,6466000080 0,01 

-3,2373025417 1,1196130514 2,3196130990 1,6466000080 0,01 

-3,2961626052 1,1855362653 2,3855363130 1,5968996286 0,01 

-3,3550226688 1,2526366710 2,4526367187 1,5968996286 -1 

 

In the case of Flappy Bird , it depends on the task, since the developer can choose the rules 

in the environment. For example, levels may be fixed, or levels may be randomly generated for 

each episode. The only dependent factor is which kind of episodes is in the game. They can either 
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have terminal states at the end, or the level can be infinite. The first case is about episodic tasks, the 

second is associated with continuous tasks. There will be no terminal states in the system being 

developed, so the task can be considered as continuous. The cumulative reward and the number of 

iterations will serve as a performance measure. 

Reinforcement Learning Algorithms. The next step is choosing a target function in the 

learning system. After comparing algorithms, it was decided to use the most suitable method for 

this task – Temporal Difference Learning. 

Model-free algorithms estimate the policy or a value function through trial-and-error 

experience. There are two planning problem types: prediction and control. A prediction problem 

can be solved with next approaches [7]: Monte-Carlo Learning; Temporal Difference Learning. 

Monte Carlo (MC) refers to algorithms without a model [7]. Since the agent is not aware of 

the environment dynamics, greedy acting would not guarantee 100% success in getting a correct 

optimal policy. The agent can stick at some point and the goal will be unreachable, or the value of 

the total reward might have been much bigger. 

The Temporal Difference Learning (TD) approach is inspired by Monte Carlo and Dynamic 

Programming ideas [11]. TD learning can be done via experience of the episodes, like in Monte 

Carlo. It solves a prediction problem. As in the Dynamic Programming, TD learning uses 

bootstrapping for updating values. Since this is a model-free algorithm, it requires no model of the 

environment. 

Unlike the previous method, in the Temporal Difference methods, direct learning takes place 

on incomplete episodes [11]. For example, an agent may be taught after each action that has been 

performed and received feedback from the environment immediately, rather than waiting for the 

end of the episode. Algorithms of this kind work well with continuous tasks. But, regardless of this, 

it is also possible to work with episodic tasks. As a reminder, the episodic tasks do have an end 

state, whereas continuously tasks episodes can last forever or until the goal is succeeded or failed. 

TD learning updates the value function each time step and does not wait for the end of the episode. 

This allows agent to learn immediately without waiting of the outcome, like MC algorithm does. 

Therefore, TD learning can be applied in non-terminating environments. 

TD learning methods planning algorithms are divided by off-policy and on-policy types. 

SARSA (state-action-reward-state-action) is an on-policy algorithm., that learns MDP 

policy. In this algorithm, actions depend on the current policy. This means the implementation of 

actions at and at+1 will be performed using the current policy π.   

Q is a quality function for state and action pairs: 

RASQ : .      (1) 

Consider the abbreviation of the algorithm, where each letter (word) corresponds to a 

parameter of the function for updating the Q-value, which is calculated as follows: 

 ),(),(γα),(),( 111 ttttttttt asQasQrasQasQ  
,  (2) 

where St  – current state;  

At – current action;  

Rt+1 – reward for performed action At;  

St+1 – next state;  

At+1 – next action;  

α – learning rate;  

γ – discount rate. 

Every time step includes:  

1) policy evaluation with estimating Q; and 

2) policy improvement with the ε-greedy strategy. 

ε-greedy algorithm is used for choosing an action with respect to the exploration-

exploitation:  



Наукові праці ОНАЗ ім. О.С. Попова, 2020, № 2 

 

 

 

88 

Yegoshyna G.A., Voronoy S.M., Ovdieichuk A.A. 

Learning system design for game applications 
 

1) initialize ε variable; 

2) generate a random value between 0 and 1; that would be r ∈ [0,1]; and 

3) if r is lesser than ε, then an action would be random; or 

4) else an action will be selected according to the one with the maximum Q with respect to 

the specific state. 

Q-Learning is an off-policy control algorithm, which uses action-value function Q to 

improve the behavior of the agent. This iterative improvement can be done with use of the Bellman 

equation. Q stands for the quality as it is working out what the quality of performing a certain action 

is. While an agent is in a certain state S at time step t, then the quality of performing action in this 

state is equal to the maximum reward, obtained in the future: 

 ),(),(maxγα),(),(
''

11 tttttttt

new
ASQASQRASQASQ  

,  (3) 

where ),( tt ASQ  – old value; 

Rt+1 – reward;  

),(max
''

1 ASQ t
 – an estimate of optimal future value. 

The Bellman equation states the maximum future reward for a specific state and action. The 

agent is not aware of the reward until an action is executed during a specific state. Only after, the 

agent can rely only on historic data. One way to store Q-values is the Q-Table. 

In this work, Q-Learning as TD extension and SARSA were used as main methods, which 

can help with the continuous and episodic tasks. Both methods can be extended to the neural 

network solution. Also, the agent can learn in an unknown environment after each time step in the 

episode. 

Environment development. In this work, the environment for interacting with the agent is 

provided by the Unity game engine. In addition, Unity provides the visual development 

environment, cross-platform support, and a modular component system, Unity also includes useful 

libraries related to machine learning and intelligent agents.  

This game engine was used to create a game application as an environment and for writing 

the necessary logics for an agent providing a unique solution. The advantages of this approach can 

also be identified as the ability to control all aspects of the environment and agent’s functioning, the 

ability to expand functionality and make adjustments. Also, experience with this engine and its 

programming language (C#) has a positive effect on the stages of application development, 

algorithms implementation, and their evaluation. 

The environment for the agent is seen as an interactive game. The main window for the 

development and testing of the project is presented in Fig. 2. 

 

 
Figure 2 – Main window for developing and testing 
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Three areas are selected on the figure: main objects of the unity project (hierarchy area); the 

root folder of the project with all subfolders, scripts, files etc.; and the game screen, where the 

testing itself is shown.  

In terms of the paper two environments were created. The first environment is a 

deterministic environment with specific rules: obstacles/pipes are fixed and have a limited quantity; 

the terminal end state is at the end; the tabular version of algorithms Q-Learning and SARSA is 

used (it means that Q-Learning and SARSA store Q-values in the Q-Table); different design and 

implementation. 

The second environment is a stochastic environment with the following differences: it 

contains four levels with different difficulty; objects/pipes have sequential order and they looped 

(this is scene #1 with some deterministic conditions, but it can last forever until the agent has 

failed); it contains scene #2 with the objects/pipes that appear randomly (the agent can perform the 

task in maximizing a reward continuously, unless failure). 

The following rules are defined in deterministic environment:  

– the bird is stationary on the x-axis, but actions to jump or do nothing can change the 

position on the x-axis;  

– in the game there are obstacles/pipes that move/scroll to the left side along the x-axis; 

– the agent’s goal is to go through the gaps in between in pipe pairs until the terminal state is 

reached;  

– a certain amount of the reward that is added at each step is accumulated; 

– in addition to moving obstacles, a bird/agent cannot touch the upper or lower boundaries; 

and 

if the agent/bird hits any obstacle, then the game will be lost and completely restarted. 

The hierarchy of objects is as follows: Canvas – contains UI game object elements (it 

contains a camera for displaying the game screen); Score – UI element, uses TextMeshPro 

component for displaying a game score; Top – represents the top border with collisions; Main 

Camera – displays the game screen; Bird – represents a bird (controlled by the agent), contains a 

bird and agent scripts (Bird.cs, Agent.cs), and has a tag «Player»; Scrolling – contains objects, 

which represent a bottom border collision, bottom sprites and a background, contains attached 

scripts (ScrollingObject.cs), is responsible for managing these contained objects; Ground object, 

which represents a bottom border and has a tag «Ground»; Cols – this object contains a 

pipe/obstacle pairs, each pair has a fixed position and an attached script (Columns.cs), one pair of 

the pipes is labeled as the terminal end state, each pair has a tag «pipe». 

Stochastic environment was developed as a separate application so that the projects would 

not be mixed. The environment is divided into two scenes. Scene «Looping Scene» consists of fixed 

levels. The terminal state is not considered since the levels were designed so that after passing a 

specific object, they change their positions in order to loop. This approach was developed to train 

the agent gradually with increasing complexity. Scene «Random Scene» consists of obstacles that 

spawn on random positions. There are four pipe/obstacle pairs where each pair consists of one pipe 

at the top and one pipe at the bottom. The main logic is that each time an agent passes one of them 

(pipe/obstacle pairs), this object will be generated at the end with a random position in each range. 

Each of the two scenes has characteristic equally main object. Unit – represents a collection of 

objects. One of the most important is the bird object which is basically an agent. Other is «PipeSet» 

which represents the moving obstacles. To implement moving objects, two scripts were written: 

Pipeset.cs, Pipes.cs. 

Pipeset.cs class responds for the set of pipes (obstacles). On the scene, there two pipe 

objects with a gap between. This is considered as an obstacle, and the pipeset includes many of 

these object pairs. The agent’s goal is to find this gap and go through it. 
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Pipes.cs class represents each pair of the pipe obstacles. This component is attached to each 

object, which is a set of these obstacles. Methods are responsible for randomizing obstacle 

positions, and they also are capable to assign their initial positions and responsible for the 

movement. 

The main logic of the environment is that the agent’s object itself does not move along the 

x-axis, while obstacles move along the negative abscissa. The ordinate axis is allocated to the agent. 

If the action does not occur, then, according to the laws of physics, the agent’s object moves down. 

But if the agent decides to take a jump, then one will rise with force up. Thus, one of the tasks is to 

balance in the given environment, and the other is to get into the passable area. All this can be 

reduced to the goal of not hitting any of the obstacles and finding the most optimal actions for this, 

based on experience. 

Some of the most successful examples of reinforcement learning are in the field of 

developing agents for games. Agent and environment are core concepts of reinforcement learning. 

The agent interacts to maximize the cumulative reward. The agent has a policy that represents one’s 

behavior or decision strategy. The environment can be implemented as a fully observable 

environment or a partially observable environment. In this report, a fully observable environment 

was selected since in this case all the complete states of this environment are visible on screen and 

everything is under control of the agent. Environments of this type use Markov decision processes. 

The main problem is to find an optimal policy. Finding optimal policy is basically the planning 

problem and consists of prediction and control.  

 

In this paper, model-free methods are found to be more suitable for the Flappy Bird problem 

due to unknown environments. To solve the planning problem, Temporal Difference Learning 

methods were selected since TD methods are able to perform in the terminal and non-terminal 

environments. Two separate environments were created for further research and evaluation of 

algorithms. As future work, Deep Q Learning and Deep SARSA algorithms should be 

implemented.   
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