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Abstract. The past years of research have shown that automated machine learning and neural
architecture search are an inevitable future for image recognition tasks. In addition, a crucial aspect of any
automated search is the predefined search space. As many studies have demonstrated, the modularization
technique may simplify the underlying search space by fostering successful blocks’ reuse. In this regard, the
presented research aims to investigate the use of modularization in automated machine learning. In this
paper, we propose and examine a modularized space based on the substantial limitation to seeded building
blocks for neural architecture search. To make a search space viable, we presented all modules of the space
as multisectoral networks. Therefore, each architecture within the search space could be unequivocally
described by a vector. In our case, a module was a predetermined number of parameterized layers with
information about their relationships. We applied the proposed modular search space to a genetic algorithm
and evaluated it on the CIFAR-10 and CIFAR-100 datasets based on modules from the NAS-Bench-201
benchmark. To address the complexity of the search space, we randomly sampled twenty-five modules and
included them in the database. Overall, our approach retrieved competitive architectures in averaged 8 GPU
hours. The final model achieved the validation accuracy of 89.1% and 73.2% on the CIFAR-10 and CIFAR-
100 datasets, respectively. The learning process required slightly fewer GPU hours compared to other
approaches, and the resulting network contained fewer parameters to signal lightness of the model. Such an
outcome may indicate the considerable potential of sophisticated ranking approaches. The conducted
experiments also revealed that a straightforward and transparent search space could address the
challenging task of neural architecture search. Further research should be undertaken to explore how the
predefined knowledge base of modules could benefit modular search space.

Key words: search space, modularization, automl, neural architecture search, genetic algorithm.

AHoTauif. 3a MUHYNI POKK AOCHIAXKEHHA NiATBEPAUNM, LLO aBTOMAaTM30BaHe MalUMHHE HaBYaHHSA Ta
MOLUYK apXiTEKTYpWU HEMPOHHOT Mepexi — ue HEMUHy4e ManbyTHE Ang 3aBAaHb PO3ni3HABAHHA 300paXKeHb.
Kpim TOro, oaHuM i3 BUpilLANbHUX acnekTiB 0yab-IkOro aBTOMaTM30BAHOIO0 NOLUYKY BUSABMBCS MOMEpPeaHbO
BM3HAYEHUI NPOCTIP NOWYKy. Ak nokasanu 6arato obuucnioBanbHUX AOCMIAXKEHb, TEXHIKA Moaynspu3auii
3aartHa cnpoctutM 6as3oBuI NPOCTIP MOLUYKY, CMPUSIOYM MOBTOPHOMY BMKOPUCTAHHIO yCnilHMX OnokiB. Y
3B'A3KYy 3 UMM, UA HaykoBa CTarTd Ma€ Ha MeTi JocniauTu BUKOPUCTAHHA Moaynapusadii B
aBTOMaTU30BaHOMY MAaLLUMHHOMY HaB4YaHHi. Y Ui CcTarTi MM MNPOMOHYEMO Ta OUIHIOEMO MOAYNbLOBaHMWI
NpPOCTIip, 3 OrNsAy Ha iCTOTHE ODMEXeHHs nonepeaHbO BU3HAYeHMX OMNOKiB AnA nowyky apxitektypu. LLo6
3pOo0MTU NPOCTIP NOLUYKY iICTOTHMM, MK NoKasanu BCi MOAyNi NpocTopy, sk 6arato cekropanbHi mepexi. Tomy
KOXKHY apxiTEKTypy B NPOCTOPi MOLIYKY OAHO3HAYHO OMUCAHO BEKTOPOM. Y HALIOMY BMNAagKy MOAYMb €
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3asganerigb 3agaHolo KinbKiCTIO nmapameTpu3oBaHuX Lapis 3 iHdopmauielo npo ixHi B3aeMo3B’A3kn. Mu
3acTocyBanu 3anponoHOBaHUM MOAYNbHUIA MPOCTIP A0 FEHETUYHOTO anropuTMy Ta OLUiHUMK KOro HaA Habopax
AaHux CIFAR-10 Ta CIFAR-100 Ha ocHoBi moayniB 3 etanoHHoro Tecty NAS-Bench-201. LLo6 po3rnaHyTu
CKMaaHICTb NPOCTOPY MOLUYKY, MU BUNAAKOBMM YMHOM Bigibpanu ABaauaTh M'ATb MOAYMIB Ta BKMOYMAN 1X Y
6a3y pgaHux. 3aranom, Haw nigxig 3HAWLWOB KOHKYPEHTHI apXiTeKTypu B cepeaHboMy 3a 8 GPU roguH.
KiHueBa Moagenb gocAarna To4uHOCTI nepeipkn 89,1 % Ta 73,2 % Ha Habopax gaHux CIFAR-10 ta CIFAR-100
BianosiaHo. lMpouec HaB4YaHHA 3aMHAB AeWO0 MEHLWY KinbKicTb rpadivyHMX roguH MOPIBHAHO 3 iHLWWMMU
niaxogamu, a OTpUMaHa Mepexa MiCTuna MeHwe napameTpiB, CUrHaniaylouu npo nerkicte moaeni. Takui
pe3ynbTaT BKasye Ha 3Ha4YHMIK MOTeHUian cKknagHux niaxoaiB A0 paHxyBaHHA. [poBeaeHi ekcnepuMeHTH
TakoXX BUSBUNU, LLO MNPOCTUIA i 3PO3YMINUIA MPOCTIp NOLWIYKY MOXe OyTW 3acTOCOBAHWUI OO CKNagHoro
3aBAaHHA NOLUYKY HEWpPOHHOT apxiTekTypu. Mae ceHC npoBeCTu noganblui AOCHIAXEHHSA, Wo6 BUBUUTU, SAK
nonepeaHbLoO Bu3HadeHa 6asa 3HaHb MOAYIIB MOXE NOCMPUATU MOAYMbHOMY MPOCTOPY MOLUYKY.

KnrovoBi crnoBa: npocTip nowyky, Moaynapusauis; automl, nowyk apxiTeKTypyu HEWPOHHOI Mepexi,
reHeTUYHUIA anropuTM.

AHHOTaumMA. 3a npowejwme rogbl UCCNEAOBaHUA NOATBEPAUMN, YTO aBTOMATUMYECKOE MALLMHHOE
o0ydeHne U MNOUCK apXMTEKTYPbl HENPOHHOW CETM ABNAITCA HeudbekHbiM OyaywmM ans  3agad
pacno3HaBaHus obpa3oB. Kpome TOro, OgHMM U3 BaXKHEWLUMX acnekToB fbOro aBTOMaTU3MPOBAHHOTO
nomcka oKasanocb npeaonpeaeneHHoe MpoCTpaHcTBO noucka. Kak nokasanu MHOrMe wuccnegoBaHus,
TEXHONOMMSA MOAYNAPU3aLMN MOXET YNPOCTUTb OCHOBHOE MPOCTPAHCTBO MOMCKA, CMNOCOOCTBYA YCMELLHOMY
MOBTOPHOMY WMCMONb30BaHMIO OnOKOB. B CBA3M ¢ 9TUM, NMpeACTaBreHHas Hay4yHas CTaTbs HanpaBfieHa Ha
UCCrego0BaHMe UCMOMbL30BAHUA MOAYNAPU3aLMU B aBTOMATM3MPOBAHHOM MALUMHHOM O0yyeHuun. B gaHHON
cTatbe Mbl MpeanaraeM W OLUEHMBaeM MOAYNbHOE MNPOCTPAHCTBO, OCHOBAHHOE HA CYLECTBEHHOM
OorpaHuy4eHuM npegonpegeneHHolx OMNOKOB AnA MOMCKA apxuTekTypbl. Ona Toro, 4tobbl caenatb
NMPOCTPAHCTBO MOMCKA CYLWECTBEHHbIM, Mbl NPEAoCTaBMIIM  BCE MOAYNM NPOCTpaHCTBa B BuAe
MHOrooTpacneBon ceTu. [103TOMY Kakgash apxXuTEKTypa BHYTPM NPOCTPAHCTBA MOUCKA MOXET ObITb
OJHO3HAYHO OMMCaHa OTAESIbHbIM BEKTOPOM. B Hawwem cnydae mMoaynb NpeacTaBnseT NnpefonpeaeneHHoe
KONMMYECTBO MapamMeTpu3OBaHHbLIX CIOEB C WHQopmauymen 00 ux COOTHOWeEHMAX. Mbl npUMeHUnu
NpeanoXeHHOe MOAYNBHOE NMPOCTPAHCTBO K FTEHETUHMECKOMY anrOpuTMy M OLEHWIU ero Ha Habopax gaHHbIX
CIFAR-10 un CIFAR-100 Ha ocHoBe moaynen us atanoHHoro tecta NAS-Bench-201. Yto6bl paccMoTpeTb
NpobremMy CROXXHOCTM NPOCTPaAHCTBA NOUCKA, Mbl ClyyariHbiM 00pa3om BeliOpanu AsaguaTb NATb MOAYNEN U
BKITIOYMIM ux B 0a3y JaHHbIX. B uyenom, Haw noaxod NO3BONUN NONYYWUTb KOHKYPEHTHbIE apXWTEKTYpbl B
cpegHeMm 3a 8 GPU yacoB. OkoH4aTenbHaa Mogerns 40CTUrna sanuaaunoHHon TodHoctn 89,1% u 73,2% Ha
Habopax gaHHbix CIFAR-10 n CIFAR-100 cooTBeTcTBEHHO. Npouecc obyyeHus notpeboBan YyTb MEHbLLE
GPU-4yacoB no cpaBHEHUIO C APYIMMMU MOAX0AaMM, a MOMyYEHHAa CEeTb COAepKana MeHblue napameTpos,
CUTHaNU3mpys 0 NEerkocTu Mogenu. Takon pe3ynbTaT MOXKET NOoKa3aTb 3HAYUTENBHLIA MOTEHUMAN CINOXHbIX
NOAXOAOB K PaHXWMpoBaHWI. [NpoBEAEHHbIE SKCNEPUMEHTHI TAKKE MOKasanu, 4To NPOCTOe M Mpo3pavHoe
NPOCTPAHCTBO MOUCKA MOXET OblTb MPUMEHUM K CIIOXHOW 3ajadye NoUCKa apXMTEKTYP HEWPOHHOM CETW.
MmeeTr co©mbICM nNPOBECTM JanbHEWWIME WCCMEefOoBaHUA ANs  WM3YYEHMA TOro, Kakum  0bpasom
npegonpegeneHHas 6asa 3HaHMIA MOAYIEN MOXET cnOCOOCTBOBaTL MOAYNEHOMY NMPOCTPAHCTBY NOMCKA.

KnrovyeBble cnoBa: npoCTPaHCTBO MOUCKa, Mogynsdpu3auus, automl, nOMCK apXUTEKTypbl
HENPOHHON CETU, FTEHETUYECKUI anropuUTM.

Introduction. Over the past decade, the field of automated search and optimization of
machine learning models (AutoML) has become widely recognized. Neural architecture search
(NAS), the research branch of AutoML, has achieved astonishing results in image recognition and
classification tasks [1]. However, conventional NAS techniques rely on a massive amount of
processing power and machine memory [2], as numerous architecture candidates must be trained
and evaluated during the search process. In this regard, the efficient search task has become an
increasing priority in NAS over the past few years [3, 4].

Among other aspects of efficiency, the size and complexity of a search space are the most
influential. As recent works [5, 6] prove, even conventionally small and light search spaces can
provide decent results comparable to algorithms that require much larger computational resources.
Consequently, the open question remains as to how complex and extensive the search space’s
structure and its objects can be. To tackle this issue, we investigate a search space formed by five
modules sampled from NAS-Bench-201 [7] and then combined using regularized evolution [8].

Related works. A cell-based cyclic structure [9] has been a commonly utilized type of
search space in NAS. The size of the search space directly depends on the set and combinations of

hyperparameters; for instance, the original NASNet configuration comprises 10'° architectures.
Even in the case of sequential models, all possible parameter combinations within a layer enlarges
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the total number of possible architectures to an order of 10™ [10]. Thus, due to the potential
redundancy, the search space’s cell-based structure was rejected within the current study. Instead,
we delineate the search space by introducing a modular architecture structure to provide a more
efficient search.

The concept of modularity has been introduced in other aspects of NAS. For example,
Zhang et al. [12] implemented the scalable modules concerning the width and depth of a single. In
[13], the authors divided the search space into blocks with fixed external and flexible internal
structures. Negrinho et al. [14] presented modules in which each layer of a block receives an array
of hyperparameters while defining the search space. In [15], the researchers proposed modules as
blocks, each of which comprised the multilevel combination of convolutional and pooling layers.

Overall, the mentioned above studies support the notion that modularization may be an
excellent solution for search space. Therefore, we aim to expand previously presented approaches
by further reducing the complexity of modular search space.

The problem statement. In this study, we propose and examine a search space based on
predefined modules that could efficiently search for optimal architecture. The current application
requires minimal modifications and adaptions owing to the straightforward concept of our
approach. The modular search space examined in this study was inspired by [14].

Let us consider the issue of NAS for the target dataset D={D, ..D,,}, where D, and

rain > train

D, , stand for training and validation datasets, respectively. The target objective can be considered a

two-level multipurpose optimization problem. In this case, the function of multiobjective bilevel
optimization might be presented as follows

g =min {1, (4.0°).C(4)}. M)
subject to
w" eargmin {lem (w, a)} ,
weW
where a,, stands for the optimized architecture among valid ones A from the search space of all

possible architectures A; C (A) is the complexity function of the optimized architecture; w

represents the weights of the neural network from the weight space W L . and L, are loss
and D

val >

functions on D

i respectively.
Now, let us consider a NAS procedure like (1), where a combination of modules m e M
determines a valid architecture 4 € A. Let us also assume that each m e M is conducted among

each other and the structure of the architecture 4 is defined by a vector

m :(ml,mz,...,mnfl,mn),
where n limits the number of modules in an architecture.

Therefore, the main goal of the presented study is to find a vector m that performs the best
for

A e arg $in {F (A;,, (Dyoin)- Dy )} ;

where the vector m denotes the architecture A- €A, and each module m em is stacked

consistently.

Modular neural architecture search. The primary aim of NAS implies an efficient
selection of well-functioning neural architectures by searching in a sequential search space. In the
case of modular search space, all modules are presented as multisectoral networks. Thus, each
architecture within the search space can be unequivocally described by a separate vector. In our
case, a module is a predefined number of parameterized layers with information about their
relationships with each other. Each module represents a possible change in the internal modular
search space. The total number of combinations of arrangements is defined as

- el
where / stands for the number of possible layers, and ¢ is the number of layers per module.
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Each module’s complexity is high and comparable to the complexity of other non-modular
search spaces. We represented each module as a randomly generated acyclic graph of layers
combined within the search sequence. Fig. 1 reveals the conceptual scheme of the examined
modular search space.

Figure 1- The group of modules within the evaluated search space

The search problem of the presented study is limited to an existing pool of modules. Each
milestone result comprises the previous module’s output data, which are then processed in the

current module. With this regard, let us consider that the vector m specifies the combination of the
consistently attached modules. Then, the final architecture gained from m can be presented as a
composition of modules mi, i =1n:
Ar =Moo ,o...om=...oM,, ° , .
The complexity of the examined search space is calculated as follows

5:§1M\’

where M stands for the set of modules, and n here is the permitted number of sequential combined
modules.

As a search strategy, we utilized a regularized genetic algorithm inspired by [8]. The
regularized algorithm aimed to search for an optimal architecture regarding the accuracy of the
classification. The search space was also limited to the selection of modules and their sequence.

Implementation details.

Datasets. In this work, we investigate the modular search space for the classification task on
two well-known benchmark datasets, CIFAR-10 and CIFAR-100 [16].

Module database. The set of modules was based on the NAS-Bench-201 interface
presented by [7]. Following the guidelines from [7], the modules were randomly generated via a
superordinate parameters matrix. The examined search space was restricted by convolutional layers
of sizes of 5x5 and 3x3 [17]. Pooling layers were set of the size of 2x2 [18]. Moreover, the search
space was also limited to the modules’ size, where each module consisted of seven layers.

Search space complexity. To address the complexity of the search space, we randomly
sampled twenty-five modules and included them in the database. The search algorithm was
designed to select either five random modules as input or the best five modules ranked based on
CIFAR-10 (which is directly available via NAS-Bench-201) limited to the time of 8 GPU hours.
The simple structure of the presented search space allowed a straightforward influence of its size.

Algorithm details. In this work, we set up the following parameters of the genetic
algorithm: population size of 4 and a sample size of 2, according to [19], and the probability of
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mutations for regularized evolution of 0.8 [8]. We also utilized an input filter size of 32, 60 training
epochs, and a batch size of 64 for each training procedure [20]. According to [7], filter sizes were
gradually increased, and dimensions instead - decreased. We also applied the weight sharing
technique as instructed in [11] to ensure the efficient training of a mutated child. Fig. 2 depicts the
general scheme of modular neural architecture search.

Figure 2 - The conceptual framework of the modular NAS

Results and discussion. The results of the examination based on the random initialization of
5 modules are presented herein. In addition to examining the proposed modular search space, we
compared it to the two most recognized approaches in the search space designing. Table 1 shows
the results of CIFAR-10.

Table 1- The results on the CIFAR-10 dataset
Number of parameters,

Approach Time, GPU hours mil Validation accuracy
[12] 12,34 19,2 0,937
[13] 95 1571 0,963
[14] 10,17 14,98 0,901
Our modular search space 7,89 9,39 0,891

As seen from Table 1, our approach’s validation accuracy, which is 89,1%, is below the
competition, yet remains efficient considering the search time of almost 8 GPU hours and the
restricted number of modules. Also, it is worth noting the potential impact of small search spaces
with learned ratings on performance. Using a few ranked modules can result in increased
productivity. Table 2 introduces the computational results of CIFAR-100.

Table 2 - The results on the CIFAR-100 dataset
Number of parameters,

Approach Time, GPU hours mil Validation accuracy
[12] 16,89 25,6 0,768
[13] 143 26,11 0,792
[14] 9,25 20,79 0,774
Our modular search space 8,07 18,78 0,732

According to Table 2, the examined modular search achieved the validation accuracy of
73,2%, which was worse compared to the state-of-the-art. Such an outcome could occur due to the
limited module choice to 3 paired with the initial filter size of 32, therefore, resulting in restricted
architectures. Nevertheless, the training process required slightly fewer GPU hours, and the
resulting network contained fewer parameters, which led to the less weight of the model.

Even though modular search space achieved lower classification accuracy than state-of-the-
art, it won in computational cost and weight. Besides, the conducted examination demonstrated that
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the complex and challenging task of NAS could be addressed by a straightforward and easy to
understand search space. Direct comparison of accuracy can be considered only as of the first
indicator due to a significant reduction in module size, module size limitation, and low parameters
in the search algorithm.

Conclusion. The presented study aims to examine the modularization of the search space in
NAS. To be specific, we substantially limited the predefined building blocks within modules. The
experiments revealed that the small set of random choice and ranked modules could produce
efficient architectures in averaged 8 GPU hours. Our genetic NAS approach achieved the validation
accuracy of 89.1% and 73.2% on the CIFAR-10 and CIFAR-100 datasets, respectively.

The conducted examination promised the modular approach’s potential benefits, such as
smooth weight sharing integration and the ranking of available modules. Furthermore, a dynamic
set of modules may result in promising architectures for varied tasks, such as medical image
classification and segmentation. To search for modules less arbitrarily, the use of meta-learning
should also be considered. A reasonable approach might be to create a module database and a
knowledge base of module potentials for diverse datasets.
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