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Abstract. A schedule ensuring the exactly minimal total tardiness can be found with the
respective integer linear programming problem. An open question is whether the exact schedule
computation time changes if the job release dates are input into the model in reverse order. The goal is to
ascertain whether the job order in tight-tardy progressive single machine scheduling with idling-free
preemptions influences the speed of computing the exact solution. The Boolean linear programming
model provided for finding schedules with the minimal total tardiness is used. To achieve the said goal, a
computational study is carried out with the purpose of estimating the averaged computation time for both
ascending and descending orders of job release dates. Instances of the job scheduling problem are
generated so that schedules which can be obtained trivially, without the exact model, are excluded. As in
the case of equal-length jobs, it has been ascertained that the job order really influences the speed of
computing schedules whose total tardiness is minimal. Scheduling two to five jobs is executed on
average faster by the descending job order input, where 1 to 3 % speed-up is expected. Further
increment of the number of jobs to be scheduled cannot guarantee any speed-up even on average. This
result is similar to that in the case of equal-length jobs, but there is no regularity in such an efficient job
order input. Without any assurance for a single job scheduling problem, the efficient exact minimization of
total tardiness by the descending job order input must be treated as on average only.

Key words: job scheduling; preemptive single machine scheduling; exact model; total tardiness;
computation time; ascending job order; descending job order.

AHoTauif. Po3knaa, wo 3abesnevye CTpoOro MiHimanbHe 3aranbHe 3ani3HIOBaHHA, MOXHA 3HANTU
3a BiANOBIAHOK UINOYUCNOBOK 3adadvelo FiHInHOro nporpamMyBaHHA. Biakputum € nUTaHHA Npo Te, uu
3MIHIOETBLCA Yac ODYUCNEHHA TOYHOrO pPO3Knady, AKWO AaTu 3anycky 3aBAaHb BBOAATHLCA Y MOAENb Y
3BOPOTHOMY nopsaaky. MeTta nonsrae y Tomy, o0 BCTAHOBUTH, YU BMAMBAE HA LUBUAKICTb OOYMCNEHHSA
TOYHOrO pO3B’A3KY MOPAAOK 3aBAaHb Yy LUINILHOMY MPOrpecyiovyoMy OAHOMALLMHHOMY MiaHyBaHHI 3
nepeMmukaHHaAMM 6e3 npocTow. [Ona nowyky po3knagiB 3 MiHIManbHUM 3aranbHUM 3amni3HBaHHAM
BUKOPUCTOBYETLCA MOAENb OynbOBOro MiHIMHOrO nporpaMyBaHHA. Onsi AOCATHEHHA 3a3Ha4YeHoi MeTu
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npoBOAUTLCA OBYMCNIOBanbHe AOCMIAXKEHHA 3 METOH OLUiHKM YCEepeAHEHOro 4acy ob4YMCneHHa sk ans
BUCXiAHOIO NOPSAAKY, TaK i ANg cnagHoro nopagky Aart 3anycky 3asdaHb. [Npuknaau 3agadi nnaHyBaHHA
3aBJaHb FEHEpPylTLCA Tak, WO PO3Knaau, AKi MOXHa OTpumMaTu TpusianbHO, 6€3 TO4HOI Moaeni, He
po3rnaaaTbCa. AK i y BUNaaKy 3 PiBHOLUHHUMK 3aBAaHHsAMKU, Oyno BCTAHOBMNEHO, LLIO NOPSAOK 3aBAaHb
OIICHO BMMMBAE Ha LUBMAKICTb OBYUCNEHHs pO3KnafiB, 3aranbHe 3ani3HIOBaHHA SAKMX MiHIManbHe.
MnaHyBaHHA Big ABOX A0 MATU 3aBAAHb BUKOHYETbCSA Y CEPEAHbOMY LUBMALUE 3a CNAAHMM MOPSIAKOM
3aBAaHb, A€ OYiKyeTbCA npuckopeHHa Big 140 3 %. lMNoganbwie 30inNblUEHHA KiNbKOCTI NNaHOBaHUX
3aBJaHb HE MOXE rapaHTyBaTU >KOAHOIO NMPUCKOPEHHS, HABITb Y cepeaHboMy. Lle pesynbTart nogibHui
[0 BMNaAKy 3 PiIBHOLIHHMMK 3aBAAHHAMM, ane perynsapHocTi B TAkOMy e(PEKTUBHOMY NMOPSAAKY BBEAEHHS
3aBaaHb Hemae. bes >oAHuMX rapaHTiin Woao OAHiel 3agadvi nnaHyBaHHA 3aBaaHb, ed)ekTMBHA TOYHA
MiHiMi3auia 3aranbHOro 3amni3HIOBaHHA 3a cnagHMM NOpAAKOM 3aBAaHb NOBUHHA TPAKTYBATUCS NULLE AK Y
cepeaHbOMY.

KnrovoBi cnoBa: nnaHyBaHHS 3aBAaHb; NfaHyBaHHA HA OAHIM MaLUUHI 3 NepeMUKaHHAMW, TOYHA
MOAENb; 3aranbHe 3ani3HBaHHA; Yyac OOUYUCIEHHA; BUCXiAHWA NOPSAOK 3aBAaHb, CNaAHUA MopsgoK
3aBAaHb.

AHHOTaumA. Pacnucanue, obGecneumBarollee CTPOro MUHUMAaNbHOE o0ulee 3anasabiBaHue,
MOX>XHO HaWTW MO COOTBETCTBYIOWEN LIENOYUCIIEHHONW 3ada4de IMHEWHOro nporpammupoBaHund. OTKPbITLIM
SIBMIAETCA BONPOC O TOM, MEHSIETCS NM BPEMSI BbIMUCMEHMS TOYHOrO pacrnucaHus, eCnu aarthl 3anycka
3agaHuin BBOAATCA B MOAenNb B obpaTtHOM nopsigke. Llenb COCTOUT B TOM, YTOObI YCTAHOBUTb, BIUSIET NU
Ha CKOPOCTb BbIMUCMEHUS TOYHOrO peLleHMs NopsiAOK 3adaHMM B MINOTHOM MPOrpecCupyroLlem
OQHOMALLMHHOM MMaHMPOBAHMM C nepeknoveHuamu 6e3 npoctoa. [ns noucka pacnucaHuin ¢
MUHUMaNbHbLIM ooLmM 3anasabiBaHUEM Ucnonb3yeTcs Moaenb OGyneBoro NUHENHOro
NporpaMMupoOBaHuA. Ona AOCTUXEHMSA YKA3aHHOW LIENW NPOBOAUTCA BbIMUCIIUTENBHOE UCCNEAOBaHUE C
LENb0 OLEHKM YCPEAHEHHOTO BPEMEHW BBLIMMCNEHUA Kak ANS BOCXOAALIEro nopsaka, Tak U ans
HUCXOAALLEro nopagka aart 3anycka 3agaduin. Npumepbl 3agadn NNaHMPOBaHMA 3aJaHUA TeHEPUPYIOTCA
TaKk, 4TO pacrnucaHusi, KOTOpPble MOXHO MONy4YUTb TpUBMANbLHO, ©6€3 TO4YHOM MoOAenu, He
paccmarpuBaloTcs. Kak u B cnyvyae ¢ paBHOLEHHbIMW 3aJaHUSIMU, ObINO YCTAHOBMEHO, YTO NOPSAAOK
3agaHuin AeWCTBUTENbHO BNUSIET HA CKOPOCTb BbIMMCIEHUSA pacnucaHuin, obuiee 3anasabiBaHUE KOTOPbIX
MWUHMManNbHO. [lnaHuMpoBaHMe OT ABYX A0 MSATM 3a4adq BbLIMOMHAETCA B CpeaHEM ObICTpee npu
HUCXOASALWEM nopaake 3agaHui, rae oxugaerca yckopeHue oT 1 40 3 %. [JanbHelwee yBenuyeHue
KONMU4YecTBa NNaHUpyeMbIX 3a4aHuini He MOXET rapaHTUpPOBaTb HUKAKOTO YCKOPEHUS, OaXe B CPEAHEM.
10T pesynbTaT nogobeH cnydaw C pPaBHOLUEHHbIMWM 33aJaHUAMWU, HO PErynsapHOCTM B  TaKOM
aphekTuBHOM Nopsake BBeAeHUs1 3adaHui HeT. bes kakmx-nubo rapaHTuin KacaTtenbHO OAHON 3aaauqun
NMNaHUpOBaHUA 3agaHun, sdhPeKTUBHAA TOUHAsE MUHMMM3AUUA 00LLEro 3anasblBaHUSA NPU HUCXOASALLEM
nopsiake 3agaHuin JOMKHA TPAKTOBATLCS MULLb KaK B CPEAHEM.

KniouyeBble crioBa: MnfaHMpoBaHMe 3adaHuin; MnaHMpoBaHWE Ha OAHOW MalluMHe C
NepekniYEHUAMN; TOMHAa Moaenb; obllee 3anasablBaHWE; BPEMSA BbIMMCIEHUS; BOCXOAALWMA NOPSAAoK
3aJaHUN; HUCXOAALLNI NOPSAOK 3adaHUN.

The idling-free preemptive scheduling. Tight-tardy progressive single machine
scheduling [1] with idling-free job preemptions is a problem of great practical importance and
impact. It serves as a means of minimizing both costs and time occupation/consumption. A
schedule ensuring the exactly minimal total tardiness can be found with the respective integer
linear programming problem involving the branch-and-bound approach [1, 2]. Owing to no
weights are included, where release dates are set at non-repeating integers from 1 through the
total number of jobs, and due dates are tightly set after the respective release dates (although
sometimes a few jobs can be completed without tardiness), the exact model simplifies for such
tight-tardy progressive single machine scheduling [1, 3]. An open question is whether the exact
schedule computation time changes if the release dates are input into the model in reverse order
[4]. The first attempt was made in article [5] which showed that a possibility exists to find
schedules more efficiently by manipulating the job order in tight-tardy progressive single
machine scheduling with idling-free preemptions of equal-length jobs. For instance, schedules of
five jobs consisting of two processing periods each were found on average by 14.67 % faster for
the descending job order. In another example of seven three-parted jobs, an optimal schedule
was found on average in 69.51 seconds by the ascending job order, whereas the descending job
order took just 36.52 seconds to find it, saving thus 32.99 seconds. In general, article [5] revealed
that, in the case of equal-length jobs, scheduling a fewer jobs divided into a fewer job parts is
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executed on average faster by the descending job order. As the number of jobs increases along
with increasing the number of their processing periods, the ascending job order becomes more
efficient. However, the computation time efficiency by both job orders tends to be irregular. So,
now the question is whether similar conclusions and properties are still peculiar to the case when
the jobs have different lengths (i. e., whose number of processing periods varies).

The goal and tasks to achieve it. The ascending job order implies inputting the release
dates in ascending (i. e., starting from 1) order, and the descending job order implies inputting
the release dates in descending (i. e., starting from the last job) order. The goal is to ascertain
whether the job order in tight-tardy progressive single machine scheduling with idling-free
preemptions influences the speed of computing the exact solution. Just as it was in [5], here the
Boolean linear programming model provided for finding schedules with the minimal total
tardiness will be used [6, 7]. To achieve the said goal, a computational study should be carried
out with a purpose to estimate the averaged computation time for both ascending and descending
orders. For this, a pattern of generating instances of the job scheduling problem will be
suggested. Unlike article [5], this pattern will be supplemented with a method of generating
random job lengths so that every instance would contain tardy jobs. Then the relative difference
between the computation times is to be estimated and treated. The research result is expected to
either reveal or disprove a possibility to manipulate the job order for obtaining schedules more
efficiently, which will be a direct extension of the research result in article [5].

Minimal total tardiness by the varying number of processing periods. Every job is
associated with its number of processing periods, release date, and due date. Letjob n be of Hn

processing periods, and r is its release date, dn is its due date, where n=1 N by the total

number of jobs N, iVeN\{l}. Integer m is the time moment, at which job n becomes

available for processing. All the time moments and the processing periods are measured in the
same time units, and thus they are synchronized.
The vector of processing periods (or job lengths)

H=[".L SN" (@8]
does not have any specific constraints applied to it. Unlike vector (1), vector of release dates
R=k L eN" (2)

is constrained depending on the job order input and the requirement of that job preemptions be
idling-free. Ifthe release dates are given in ascending order then

r=n Vn=1N. 3)
Ifthe release dates are given in descending order then
m=N-n+l Vn=1N. 4
The vector of due dates
“ = (5)

is not purely random as the due dates are tightly set after the release dates, in whichever order
they are given:

dn:rn+Hn-1 +bn Vn=1N (6)
for ascending order and
dn=m+Hn-1+bNnmd Vn=1N (7)
for descending order, where bn is a random due date shift generated as
K=V(Hn<) for n=1N (8)

with a pseudorandom number C drawn from the standard normal distribution (with zero mean
and unit variance), and function y(”) returning the integer part of number \ (e. g., see [4, 5]).
Due date shifts (8) are generated until
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e/,"l Vn=1N. (9)
If
Vn=1N -1 (10)
and, occasionally,
dn”d,,-\ Vn=1N-1 (11)

for the ascending job order input, then due date shifts (8) are re-generated as well.
Symmetrically, if
\/n =I,N -1 (12)
and, occasionally,
d,,>dH;, VWw=1"-1 (13)
for the descending job order input, then due date shifts (8) are generated once again until such
shared monotonicity is broken. This is done so because in the case of when either both
inequalities (10) and (11) or both inequalities (12) and (13) are true, a schedule ensuring the
exactly minimal total tardiness is found trivially, without resorting to any algorithm or model: if
(10) and (11) are true for the ascending job order input, an optimal schedule is composed by
arranging jobs from the earliest one to the latest one; if (12) and (13) are true for the descending
job order input, an optimal schedule is composed by arranging jobs from the latest one to the
earliest one. In article [5], this fact was proved for the case of equal-length jobs. For the case of
different job lengths, this is going to be proved below.
Once due date shifts (8) are given properly, due dates (6) set in the order corresponding
to ascending order of the release dates (3) are

dn=Hn+n-1+bn Vn=1N (14)
and due dates (7) set in the order corresponding to descending order of the release dates (4) are
d =N+H 'n+bN—H-E|. Vn=1N. (15)

The length of the schedule is N

X

The goal is to minimize the total tardiness through schedule’s length (16), i. e. to schedule N
jobs so that sum

t (16)

N

X maxf0,0(n;HnN) - dn} @an
g

would be minimal, where job n is completed after moment 0(n; Hn), which is

O(«; Hn)e{iTr}.
This goal is equivalent to finding sucltll dI?ICiSi'IQn variables which minimize sum [2, 6, 7]

rvixrt, (18)
M h4 &=

where xrit is the decision variable about assigning the h-th part ofjob n to time moment t:

xrt =1 if it is assigned; xrit =0 otherwise. The triple-indexed weights (these ones are not the
job priority weights)

THN
M g
are calculated as follows:
“nhj =0 (19)
22 Romanuke V. V.
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by
r-\+hn*"t~T-H n+ha Vhn—, Hn (20)
and

Khrt —a (21)

by a sufficiently great positive integer a (similar to the meaning of infinity, i. e. it is an infinity
“substitute” for real-practice calculations) when (20) is not true;

ArHt —0 (22)
by
m~X+Hn At~ dn (23)
and
ArHt —t —dn (24)
by
d,<t<T (25)
and
nHj —a (26)
when both (23) and (25) are not true. In (21) and (26), for instance,
a=Z Z =NIIIHI) (27)
==t 2
can be used [1, 5, 6]. The decision variables constraints are as follows:
xktg{01} by n—4 N and hn—, Hn and t—, T, (28)
T
Z XK—1by n—N and h—IHn, (29)
=+
N Hh .
— — (30)
%ééxrm 1by 14T
by n—LN and t—1 T—L (31)

An optimal job schedule
S by 5g{l N} forevery t—1 T (32)
is found by a set of the decision variables at which sum (18) is minimal, where
5 @ =N VK—LH, by 0<(n;h,)g{L T}
and 0*(n; hn)<0* (n; hn+1) for hn=1 Hn-1.

Thus, 0*(n; Hn) is a moment after which job n is completed, and, according to sum (17),
N

= *(n: 33
(N)=Z , maxf0,0%(n;Hn)- dn} (33)

is the exactly minimal total tardiness for those N jobs. Generally speaking, the problem of
minimizing sum (18) by (19) - (27) and constraints (28) - (31) can have multiple solutions
(multiple sets of the optimal decision variables), so multiple optimal schedules ensuring the same
minimal total tardiness (33) can exist.

As it has been mentioned above, the stated model for calculating schedules with the
exactly minimal total tardiness is needless when the job lengths, release dates, and due dates are
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given in non-descending order (or in non-ascending order). This has been called the shared
monotonicity. For instance, ajob scheduling problem with

H=[HL =[3 4 4 «]m
R=kL=P 2 3 4]m
D=dL =[3 3 3 5]
has an obvious optimal schedule
= ] =1 1122 22333344444 4,

which can be easily figured out by common sense. Its total tardiness
4

(4= >I§Iﬂ_ max f0, e*(n;H«) - d«}=
=maxfO, 3- 3}+maxf0, 7- 3}+
+maxf0, 11- 3}+maxfO, 17- 5} =24

is then trivially calculated. The “reverse” instance, whose inputs

Hn=HL =[6 4 4 3]m
R =k IM=[4 3 2 >m

p =dn. =[5 3 3 3]
are clearly seen to be given in non-ascending order, is built analogously:
S*=[5%]117=][4 4 4 3 3 3 3 222211111 1]

where the total tardiness is surely the same. Obviously, a great deal of such examples can be
stated. The following theorem rigorously describes a class of tight-tardy progressive single
machine scheduling problems with idling-free preemptions which do not need the approach with
minimizing sum (18) by (19) - (27) and constraints (28) - (31).

Theorem 1 (the ascending job order input). A single machine scheduling problem with
idling-free preemptions of jobs whose processing periods satisfy inequalities (10) by release
dates (2) as (3) and due dates (5) by inequalities (11) has an optimal schedule

n-1 n

Sk:L‘Jlxr by s*=n Vt= Hj+1, Hj for n=1N (34)

whose total tardiness

91.n = er’x-lj -d~ (35)

n=1 N il
IS minimal.

Proof. Suppose that amount (35) can be decreased by interchanging some different jobs
m and p in schedule (34), where m <p . The interchange implies that the job is moved either

forward or backward as a comprehensive whole, with all its processing periods standing in a row
in schedule (34). Firstly, let

and (36)

for these jobs. The collective tardiness ofjobs m and p in schedule (34) is
I I
maxj 0, X—ii - dm[+maxj 0, X—i - dp
j4 j=1

24 Romanuke V. V.
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=T Hj-dm+|_ H->-dpe (37)
J=1 J=1
Then, in the new schedule, job p is completed at moment
m-1
H +Hpe (38)
J=1

Jobs from (m+ 1)-th one through (p -1) -th one follow moment (38). So, job m is completed at

moment
m-1 p-1
XHJ+H+ XHJ+Hm=
=1

J=m+1

m-1 P-1
XHJ+Hm+XHJ+HP=XHr (39)
j=1 j=m+1 j=1
As job m is completed later than in schedule (34), then its tardiness is greater than that in (34):
(40)
If the tardiness ofjob p , scheduled now earlier than in schedule (34), is
(41)

then the collective tardiness ofjobs m and p in the new schedule is not less than the collective
tardiness of these jobs in schedule (34):
m-1
max €0, d +max(0, H,+H,-d,
j=i j=ia
m-1

XHJ—dm+XHJ+Hp'_d?= (42)

where property H ...Hmfrom (10) is used along with (36), (40), and (41). Otherwise, if

th+h p- dp<) (43)

J=1
then the collective tardiness ofjobs m and p inthe new schedule is greater than (37):

m-1

max €0, d +max(0, H ,j+H,,p- d,,p

XHdXH.. d
Ko Fran s Fipmn =
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=ZHj—dm+ZHj—dP- (44)

H H
where property H ~ Hmfrom (10) is used along with (36), (40), and (43). Secondly, let

ZHj-dm<0 and (45)

=1
The collective tardiness ofjobs m and p in schedule (34) is

I I
maxj 0, ZHi - dm\ +maxj 0, ZHi - dp
B i =i

Z Hi-dPm (46)
If the tardiness of job p , scheduled now earlier than in schedule (34), satisfies inequality (41),
then the collective tardiness ofjobs m and p in the new schedule is not less than the collective

tardiness of these jobs in schedule (34):

(

p | m~1_
O,Z Hj—dm’+man0,X Hj+Hp-dp

(47)

where property dm,, dp from (11) is used along with (41) and (45). Otherwise, if the tardiness

ofjob p in the new schedule satisfies inequality (43), then once again the collective tardiness
ofjobs m and p in the new schedule is not less than the collective tardiness of these jobs in
schedule (34):

maxj 0, -+maxj 0, ZH,- +Hp - dp
(48)
where property dm,, dp from (11) is used along with (43) and (45). Finally, let
p
and Hj - dp<0. (49)

j=i
The collective tardiness ofjobs m and p in schedule (34) is

maxj 0, mZH +max]j 0, ZI!| -d
&l H
L. ... (50

Owingto m<p,
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m—1 P
Y H+H,-d, <Y H -d, <0,
J=1 J=1

so inequality (43) is true again. Then the collective tardiness of jobs m and p in the new
schedule is greater than (50):

ya m—1
max{O, ZH]. dm}erax{O, ZH]. +H, a’p} =

j=1 j=1

:Zp:Hj—dm>Zm:Hj—dm. (1)
=1 J=1

Therefore, in each of the cases (36), (45), (49), total tardiness (35) is not decreased. If,
occasionally,

m )4
D H,-d,<0 and Y H, -d,<0, (52)
J=1 7=

then the collective tardiness of jobs m and p in schedule (34) is zero, and thus it cannot be

decreased. Interchanging a pair of the completing parts of two jobs leads to the same conclusions
by straightforwardly using (36) — (52). In general, these statements imply that moving an earlier
job forward cannot decrease total tardiness (35). Consequently, schedule (34) is optimal and thus
total tardiness (35) is minimal. The theorem has been proved.

It is worth to note that the conditions of Theorem 1 hold for any number of jobs. The
“flipped” case (i. e., the descending job order input) is easily proved by using the obvious
symmetry in reasoning.

Theorem 2 (the descending job order input). A single machine scheduling problem
with idling-free preemptions of jobs whose processing periods satisfy inequalities (12) by release
dates (2) as (4) and due dates (5) by inequalities (13) has an optimal schedule

S"=[s/] . by s =N-n+l Vt:ZHijHH, ZH:HNJ.+1 for n=1, N (53)

whose total tardiness is (35).
In a partial case of Theorem 1, when

d=H +n-1 VYn=1N (54)
(ie,b =0 Vn= I,_N) by (10), due dates (54) themselves are given in ascending order:
d,—d,=H,  +n+1-1-(H, +n-1)=
=H _ —-H +1>0,
SO

Then total tardiness (35) is
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Z[ZH n+1} Z(N J)H, - (U] I)N (55)

Unlike scheduling equal-length jobs, where the optimal schedules for this partial case can be
derived (see Theorem 2 in [5]) from the respective partial case of schedule (34), which is

S" = |:S::|IX(N-H) by s, =n Vi=(n-1)H+1, nH

_ (56)
by H,=H for n=1, N,
partial case (54) by different job lengths satisfying inequalities (10) for
H =H+n-1 Yn=1, N (57)

has an opposite property.

Theorem 3 (the single schedule in ascending order). A single machine scheduling
problem with idling-free preemptions of jobs whose processing periods are (57) by release dates
(3) and due dates (54) has the single optimal schedule (34).

Proof. Conditions of this theorem are a partial case (strict inequalities) of conditions of
Theorem 1, so schedule (34) is optimal. Therefore, it is about to prove that no other optimal
schedules exist here. Consider interchanging some different jobs m and p in schedule (34),

where 1<m < p (as previously, the interchange implies that the job is moved either forward or
backward as a comprehensive whole). The collective tardiness of jobs m and p in optimal

schedule (34) is
max{o, Zm:H]dm}—i-max{O,Zp:H]dp}
max{o,zm:(H+jl)(H+ml+ml)}+
+max{0, Zpl:(H+jl)(H+pl+p1)}
max{O, 2H+2(jl)z(ml)}+
+max{0,pZ;H+Zp1:(]1)2(pl) =
_maX{O (m—l)H+%(m—l)—2(m—l)}+
+max{0, (p—l)H+§(p—l)—2(p—1)}:
:max{O, (m—l)[H+%—2}+
+max{0 (- 1)[H+§—2}
:(m—l)[H+E—2J+(p—l)[H+§—2) (58)
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The collective tardiness ofjobs m and p after the interchange is

maxj 0, H +Hp-d
| J | M

=max]j 0, Bh *j-D)-(H+m-1+m- 1
=
1
0, Bf*j -D+H+p-1-(H+p-1+p-1)

i=

=maxj0,(p-1)H+P (p-1)-2(m- 1)j+

+max10,(m- DH +~p~(m-2)-(p- Dj =

=(P-1)[H+p j-2(m-1) +

59
+max|0,(m- D"H +m” 27 j-(p-1)j . &

It is easy to see that the last term in (59) can be both nonnegative and negative. If
(60)
+ -(p-1)no
then the collective tardiness ofjobs m and p after the interchange is
(P-DH +p j-2(m-1) +
+(m-DYfH+m " ~- (p- 1=
m- 2
=(P-1)1H+p -1 I+(m-DI1H+ 2 -21. (61)

The difference between collective tardiness (58) ofjobs m and p in optimal schedule (34) and
collective tardiness (61) of these jobs after the interchange by (60) is

(M-)1H+m-2 |[+(p-1)1 H+p -2 I-

m22_

-(p-D1H+ -1|-(m-D1H+ 2 =

=(m-D-(p-1)=m-p<0. (62)
Inequality (62) implies that the interchange by (60) only increases collective tardiness (58).
Otherwise, if

(m-Y(H+m-2|-(P-D)<O0 (63)
then the collective tardiness ofjobs m and p after the interchange isjust
(p-DMH +Pj-2(m- 2. (64)

The difference between collective tardiness (58) ofjobs m and p in optimal schedule (34) and
collective tardiness (64) of these jobs after the interchange by (63) is
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(m—l)[H+%—2}+(p—l)[]—]+§—2}—
—(p—l)[HJrgJJrZ(m—l):

:(m—l)[H—k%J—Z(p—l). (65)

The difference between the left term of inequality (63) and the last term in (65) is
(m—l)[Herz_zJ—(p—l)—
—(m—l)[HJr%JJrZ(p—l):

=—(m-1)+(p-1)=p-m>0,
so difference (65) between collective tardiness (58) and collective tardiness (64) is negative.
This implies that the interchange by (63) only increases the collective tardiness (58).
Interchanging a pair of the completing parts of two jobs leads to the same conclusions by
straightforwardly using (58) — (65). In general, these statements imply that moving an earlier job
forward only increases total tardiness (35). Consequently, optimal schedule (34) is single. The
theorem has been proved.

It is worth to note that the conditions of Theorem 3 hold for any number of jobs and for
any natural /A . The “flipped” case (i. e., for the single schedule in descending order) is easily
proved by using the obvious symmetry in reasoning.

Theorem 4 (the single schedule in descending order). A single machine scheduling
problem with idling-free preemptions of jobs whose processing periods are

H=H+N-n Vn=1,N (66)
by release dates (4) and due dates
d =N+H —-n Vn=1, N (67)

has the single optimal schedule (53).
In fact, due dates (54) are
d =H+2n-2 Vn=1, N
after taking into account job lengths (57), and due dates (67) are
d =2N+H-2n Vn=1, N
after taking into account job lengths (66). Schedule (34) for the case of the single schedule in
ascending order is simplified as

t

' =[s7] by s =n Vtz(n—l)[HJr . J+1,n[H+TJ for n=1, N (68)

whose total tardiness (35) simplified as

N
n-1
9 v= nzllmax{O, n[H +TJ—(H+2n—2)} =

:ZN:(n—l)[H+§—2j. (69)

n=2
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Schedule (53) for the case of the single schedule in descending order is simplified as

t

S :[s LT by s, =N-n+1 ‘v’t:(n—l)[HJr 3 J-ﬁ-l,n[H-i-TJ for n=1, N. (70)

For instance, a job scheduling problem with
H:[Hn]lx5 :[3 4 5 6 7],
R:[rn]lx5 :[1 2 3 4 5],
D:[dn]m:p 57 9 11],
where H =3, has the optimal schedule

*

S=|s;] =1 11222233333

4444445555555]
which can be easily built by (68). Its total tardiness

8.5 Zzsl(n—l)[hhrg_zj _

n=2

:i(n—l)[ng}w

is then trivially calculated by (69). Then‘:ieverse” instance, whose inputs
H=[#,],=[7 6 5 4 3],
R:[rn]lx5 :[5 4 3 2 1],
D:[dn]m :[11 9 75 3]
are clearly seen to be given in descending order, is built analogously by (70):

*

S'=[s'] =[5 55444433333
222222111111 1],

where the total tardiness is surely the same.

Obviously, all those “naive” cases described by Theorems 1 —4 are excluded from the
computational study. However, the exclusion does not exclude cases in which the schedule
trivially coincides with one of optimal schedules (34), (53), (68), (70), although not obeying the
conditions of these theorems (see Fig. 4 in [5]). Such coincidences are just occasional.

A pattern of generating instances of the job scheduling problem. Different job lengths
are randomly generated [6]:

H,=y(40+2) for n=1, N (71)

with a pseudorandom number v drawn from the standard uniform distribution on the open
interval (O; l). When job lengths (71) and due date shifts (8) by some N are generated for the
ascending job order input so that inequality (9) holds and at least one of the inequalities in (10)
and (11) is violated, then an ascending order schedule by job lengths {H n}ivzl, release dates (3),
and due dates (14) is computed by minimizing sum (18) by (19) — (27) and constraints (28) —
(31). Alternatively, a descending order schedule by job lengths

{Hn}ivz1 after H](."bs) =H,6 Vj= LN and H,=H™), for n=1, N, (72)
release dates (4), and due dates (15) is computed as well, where job lengths (72), release dates
(4), and due dates (15) are obtained by just reversing (i. e., flipping the left and right) job lengths
{H n};vzl, release dates (3), and due dates (14) for the ascending job order input.

At a fixed number of jobs N and for a job scheduling problem instance tagged by an
integer ¢, denote the schedule computation times by ascending order and descending order by
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8/1c(N, ¢) and 8Dc(N, c) in seconds, respectively. Each of these amounts implies computation

time spent on just searching the solution to the problem of minimizing sum (18) by (19) - (27)
and constraints (28) - (31), i. e. on exploring nodes by the branch-and-bound algorithm. At that,
the time spent on forming constraints (28) - (31) is not counted in 8Asc(N, ¢) and 8Des(N, c).

Therefore, these amounts in article [5] were called inner computation times. However, article [5]
showed that difference between inner computation times and outer computation times (which
count also time spent on forming the constraints) is negligible.

If the total number of the instances is C, then the averaged inner computation times are

8Mc(N)=- ~ 8 Ac(N,c) (73)
=1
and
1c
80x(N)=~ £ 8D,c(N,c). (74)
o= 1
In percentage terms, the relative difference between inner computation times (73) and (74) is
L(N) =100,8%c(N) 8DOxc(N) . (75)
) 8 ") ()

Relative difference (75) will be estimated by N =2, 8 for C =250.

Computational study. The computational study is executed on CPU Intel Core i5-
7200U@2.50 GHz using MATLAB R2018a. Relative difference (75) between inner computation
times (73) and (74) is shown in Fig. 1, where the horizontal zero level line is imposed. This line
allows seeing where the schedule is computed faster by the respective job order input.

Figure 1- Relative difference (75) between inner computation times (73) and (74)
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Fig. 2 shows the percentage of instances at each number of jobs, which have coincided
with either optimal schedule (34) or (53) for the ascending job order input and descending job
order input, respectively, although not obeying the conditions of Theorem 1 and Theorem 2.
Comparing Fig. 2 to Fig. 4 in [5], it is clear that the number of such occasional coincidences is
lesser for the case of when the jobs have different lengths.

However, the number of re-generations of job scheduling problem instances caused by
simultaneously true inequalities (10) and (11) or (12) and (13), or just by violating inequalities
(9), is still huge (Fig. 3). Despite this number decreases as the number of jobs increases, it takes
roughly a half of all instances to be re-generated at even scheduling eight jobs (where the ratio in
Fig. 3 is roughly equal to 1).
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Figure 2 - The percentage of instances, which Figure 3 - The ratio ofthe number ofre-
have coincided with either optimal schedule generations of due date shifts (8), which are

(34) or (53) for the ascending job order input  caused by simultaneously true inequalities (10)
and descending job order input, respectively, and (11) or (12) and (13), orjust by violating
although not obeying the conditions of inequalities (9), to the total number of instances
Theorem 1and Theorem 2 to be generated at a fixed number ofjobs

In general, the trends of polylines in Fig. 1- 3 are pretty similar. Repetitions of such a
study (i. e., estimations by N =2, 8 for C =250) produce polylines whose trends are roughly
the same. Surely, the meaning and impact of Fig. 1 are far more important that those of Fig. 2
and 3, so the obtained estimation of the percentage of relative difference (75) is to be discussed
in a more specific way.

Discussion. Scheduling just two jobs is a trivial problem which is successfully solved by
heuristics [1]. Therefore, the possibility to obtain an optimal schedule of two jobs by almost
15.7 % faster with the descending job order input has no practical impact. A more interesting
case is when three jobs are scheduled (not always the heuristics to minimize total tardiness
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achieve the minimum), where it is expected to obtain an optimal schedule by almost 1 % faster
with the descending job order input. For instance, the problem with

H:[4 3 6], R:[l 2 3], D:[4 6 3], (76)
whose optimal schedule (by the ascending job order input)
$'=[s] =l 11122233333 3] (77)

with §°(3)=11 is obtained in 691 milliseconds, is solved almost thrice faster (!) by the
descending job order input (in 231 milliseconds) as

H=[6 3 4], R=[3 2 1], D=[3 6 4], (78)
whence an optimal schedule has a view of
=[] =3 333222111111] (79)

Schedules (77) and (79), although not obeying the conditions of Theorem 1 and Theorem 2, have
just coincided with schedules (34) and (53). In another example with 8'(4)=22, an optimal
schedule

S=|s;| =l 111 2224444433333 3] (80)
of four jobs by
H=[4 3 6 5], R=[1 2 3 4], D=[4 6 3 ¢] (81)
is found in 1308 milliseconds, whereas the same schedule in a view of
S=[s] <[4 4443331 111122222 7] (82)
for
H=[5 6 3 4], R=[4 3 2 1], D=[6 3 6 4] (83)

is found in 693 milliseconds, i. e. by almost 88.7 % faster. So, why is the descending job order
input only 1 % to 3 % faster in scheduling a few jobs? The matter is that the relative difference is
an average, so there are also examples with negative influence of the descending job order input.
Thus, the problem with

H=[6 3 5], R=[1 2 3], D=[8 6 3], (84)
whose optimal schedule (by the ascending job order input)
=[] =l 222111113333 3] (85)

with 9 (3) =12 is obtained in 269 milliseconds, is solved by 65.6 % slower by the descending

job order input (in 445 milliseconds) as
H=[5 3 6], R=[3 2 1], D=[3 6 8], (86)
and

*

S=[s;] =3 2223333311111] (87)

It is worth to note that problems with (76) and (84) differ in lengths of the first and third jobs and
in the due date of the first job. Eventually, problem with (84) has job lengths less appearing like
sorted in ascending order (they appear more as sorted in descending order). Moreover, due dates
in (84) are indeed sorted in descending order. Another counterexample is built on the base of the
problem with (81): the problem with

H=[6 3 5 6], R=[l 2 3 4], D=[8 6 3 9] (88)

whose optimal schedule (by the ascending job order input)

*

S'=[s;] <[l 1222 1111333334444 4 4] (89)

with 8*(4) =23 is obtained in 3.063 seconds, is solved by 20.8 % slower by the descending job
order input (in 3.7 seconds) as
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H:[6 5 3 6], R:[4 3 2 1], D:[9 3 6 8] (90)

and

S=[s] =[44333444422222111111. @
Once again, having both the problems with (81) and (88) as the ascending job order input, it is
worth to note that the problem with (81) is more like to be presented “in ascending order” than
the problem with (88). The same concerns the problems with (83) and (90): the job lengths and
due dates in (83) are more like to be presented “in descending order” than those in (90).
Therefore, the positive average relative difference between computation times for the ascending
and descending job order inputs in scheduling three to five jobs may be violated if the job order
input appears more to be like the opposite order (ascending order as descending and vice versa).

The vector of processing periods formed by (71) does not have any features of either the
ascending or descending order. The only “carrier” of the job order input feature (apart from the
release dates) is the due dates. As the number of jobs increases, this feature may disappear as
then the definite order (defined by the release dates) in the due dates shatters. Consequently, the
speed of computing the exact solution at scheduling six jobs or more cannot be reliably increased
even on average. Nevertheless, scheduling a lesser number of jobs can be sped up significantly if
this routine is repeatedly continued. For example, an optimal schedule

S=[s] =[l113355554444222 2] (92)
of five jobs by

H=[3 4 2 4 4], R=[1 2 3 4 5], D=[6 9 6 7 9] (93)
with 9 (5) =14 is found in 822 milliseconds, whereas the same schedule in a view of

S=[s] =[5 533252224444 1111], (94)
which is not derived straightforwardly from schedule (92) by just flipping the left and right, for

H=[4 4 2 4 3], R=[5 4 3 2 1], D=[9 7 6 9 ¢] (95)

is found in 472 milliseconds, 1. e. by almost 74.3 % faster. Here the difference is 350
milliseconds. Thus, if this routine is repeated for 1000 times, the descending job order input by
(95) saves 350 seconds; 10000 repetitions save more than 58 minutes. Obviously, the saved
computation time grows as the job processing periods are increased: e. g., if the job lengths in
the example with (93), (95) are twice increased, an optimal schedule by the ascending job order
input is found in 36.25 seconds, whereas the descending job order input takes 30.24 seconds.
Then, after just 1000 repetitions, the saved time is more than 100 minutes (!), although here the
descending job order input is only 19.87 % faster.

Conclusions. As in the case of equal-length jobs, it has been ascertained that the job
order in tight-tardy progressive single machine scheduling with idling-free preemptions really
influences the speed of computing schedules whose total tardiness is minimal. Based on the
pattern of generating instances of the job scheduling problem, in which for avoiding trivial
schedules both job lengths and due dates are neither simultaneously given in non-descending
order, nor are simultaneously given in non-ascending order, it has been revealed that scheduling
two to five jobs is executed on average faster by the descending job order input. Further
increment of the number of jobs to be scheduled cannot guarantee any speed-up even on average.
The reason is the due dates in either ascending or descending job order input start losing their
feature of “approximately being sorted” in ascending or descending order for a greater number of
jobs. The “disappearing” order is explained with that the due dates are formed by adding due
date shifts which are random values distributed normally (for a shorter sequence of job lengths,
the due dates definite order defined by the release dates is less “shattered”).

The average speed-up is about 1 to 3 % by the descending job order input at scheduling
two to five jobs, but not every instance will have such a positive impact. Contrary to this, the real
speed-up for a single instance can achieve 20 to 80 % and more. However, it is balanced by
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negative impact of other instances (where the definite order is less “prominent” or just appears
more to be like the opposite order), so the final result of 1 to 3 % speed-up is expected. This
result is similar to that of article [5], where the descending job order computation time can be
shorter up to 10 % and more in scheduling two to six jobs divided into two to four or even five
parts each, but there is no regularity in such an efficient job order input. Without any assurance
for a single job scheduling problem, the efficient exact minimization of total tardiness by the
descending job order input must be treated as on average only.

The research should be furthered by studying the case when different priority weights are
considered for exactly minimizing total weighted tardiness. An eventual comparison and
arrangement of the respective results for the three classes of job scheduling problems (total
tardiness by equal job lengths [5], total tardiness by different job lengths, total weighted
tardiness) should be made.
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