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Abstract. A possibility to optimize the probabilistic neural network is studied by building an efficient
training set. Commonly, the training dataset for a probabilistic neural network is a matrix whose columns
represent classes. If every class has only one column, the matrix is called the single class pattern matrix.
However, the simple architecture of the probabilistic neural network does not imply that the class pattern
must be single. First, the range of values for a class feature can be too wide. Then it is desirable to break
it into subranges, each of which will give its own average and thus a few patterns for this class will be
formed. Second, a class feature can have a finite number of its values, where every value has the same
importance. Then it would be incorrect to calculate an average and use it in the respective single class
pattern. Thus, it is studied whether concatenation of pattern matrices into a long pattern matrix is
reasonable. In fact, the goal of the research is to ascertain whether it is efficient to build probabilistic neural
networks on long pattern matrices. The criterion of the efficiency is performance of the probabilistic neural
network, i. e. either its accuracy or percentage of errors. To achieve the goal, performance of the
probabilistic neural network is estimated on the case when the class is described by a few class patterns.
The probabilistic neural networks are then tested for the two subcases: when objects generated by different
class patterns are fed to the input, and when objects are generated by a generalized single class pattern.
Eventually, it is ascertained that training probabilistic neural networks on the single class pattern matrix
(obtained either by averaging over the available pattern matrices or just by using one pattern per class) is
more efficient when the objects to be classified do not inherit any class pattern numerical properties. On
the contrary, when the objects to be classified may have some distinct numerical properties of a few class
patterns, then training probabilistic neural networks on long pattern matrices is more efficient ensuring
noticeably higher accuracy. The smooth training method appears inefficient in improving the performance.

Key words: classification problem, probabilistic neural network, pattern matrix, single class pattern
matrix, horizontal concatenation of matrices, smooth training, noised pattern matrices, long pattern matrix,
generalized single class pattern.

AHoTauif. BuB4aeTbCA MOXNUBICTbL ONTUMI3yBaTU iIMOBIPHICHY HEWPOHHY MeEpexXy Ha OCHOBI
edEeKTMBHOT HaBYamnbHOT MHOXWHKU. 3aszBuyan HaB4vanbHUM Habip AaHMX AN IMOBIPHICHOT HEMPOHHOT
Mepexi NnpeacTaBnsae cobol MaTpuLIo, YMi CTOBNLI PENPE3EHTYIOTb KNacH. FAKLLO KOXKEH Knac mae nuwe
OAWH CTOBMELb, LI MAaTPULUA Ha3MBaETLCA NOKNACOBOIO €TANOHHOK MaTpuuero. OgHak NnpocTa apxiTekTypa
iMOBIPHICHOT HEMPOHHOT MepPEXi HE 03HAYae, LLIO KOXKEH Knac mae OyTu npeaCTaBNeHUn OAHUM €TanoOHOM.
Mo-nepLue, gianazoH 3HAYE€Hb 03HAKKU KNacy Moxke ByTu 3aHaATO WKMPOKUM. Toai 6axkaHo po3BUTM MOro Ha
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nigaianasoHn, KOXKEH 3 SIKMX AaCTb CBOE CepedHe, | Takum YMHOM Oyae chOpMOBAHO AEKiNbKa €TarnoHiB
Ana gaHoro knacy. NMo-apyre, o3Haka knacy MOXe MaTh CKiIHYEHHY KiNbKICTb 3HaYeHb, A€ KOXXHE 3HaYEeHHSA
Ma€ OJHAKOBY 3HaYMMICTb. ToAi 6yno 6 HEKOPEKTHO oBumcnoBaTu CepeaHe i BUKOPUCTOBYBATM WOrO y
BiANOBIAHOMY MOKNACOBOMY €TanoHi. TOMy BMBYaETLCS, YM AOLINbHOK Oyae KOHKaTeHauis €TanoOHHMX
MaTpuUb Yy AOBry €TanoHHy MaTpuulo. PakTUUHO METOKW AOCNIAKEHHS € BCTAHOBIEHHA TOrO, Yn €
ed)eKTMBHO NobyaoBa iMOBIPHICHMX HEMPOHHUX MEPEX Ha AOBrMX eTanoHHUX MaTpuuax. Kputepiem
€dEKTUBHOCTI € MPOAYKTUBHICTb IMOBIPHICHOT HEMPOHHOT MepeXxi, TOBTO 1T TOYHICTL ab0 BiACOTOK MOMUNOK.
Lna gocarHeHHs Uiel MeTu NPOoAYKTUBHICTL IMOBIPHICHOT HEMPOHHOT MepeXi OLHIETLCA Ha BUMAAKY, KOJn
Knac onuCyeTbCA Aekinbkoma eTtanoHamu. [ani iMOBIPHICHI HEWPOHHI MepeXki TEeCTYITbCA ANa ABOX
nigBuNaakis: konm 06’€KTH, WO NOAAKTbLCA HA BXill, rEHEPYIOTLCA 3@ Pi3HUX KNACOBUX €TAaroHIB, i KONu
00’EKTU reHepyloTLCA 3a y3aranbHEHOro NOKMacoBOro eTanoHy. 3peLuToro, BCTAHOBIIETLCS, L0 HABYAHHS
iMOBIpHICHMX HEWPOHHMX MEpPEeXX Ha [MOKMACOBIA €TanoHHIn MaTpuuli (oTpumaHin abo Ha OCHOBI
yCepeAHEHHS 3a HassBHUMMW €TanoOHHMMMK MaTpuusiMiu abo NpoCcTo 3a BUKOPUCTAHHA O4HOIrO €TanoHy Ans
KOXHOTO Knacy) € Ginblu edpekTMBHUM, KOnK 00’ekTn aAna knacudikauii He HacNiAyTb XXO0AHWUX YNCITOBUX
BNACTUBOCTEN KNACOBUX eTanoHiB. | HaBnaku, konu o6’ekTn ans knacudikauii MOXyTb MaTK A€sKi BUPa3Hi
YMCNOBI BNACTMBOCTI KiNbKOX KNacoBUX €TarioHiB, TOAi HaBYaHHA iIMOBIPHICHUX HEWPOHHUX Mepex Ha
JOBIMX €TanoHHUX maTpuusax € Binblw edeKkTMBHUM, 3abesneuyroun 3HAa4YHO BULLY TOuHICTL. MeTtoa
rNagkoro HaBYaHHA B yAOCKOHANEHHI NPOAYKTUBHOCTI BUABNAETLCA HEE(EKTUBHUM.

KnioyoBi cnoBa: 3agada knacudikauii, iMOBipHICHA HEWpPOHHA MepeXka, eTarioHHa martpuus,
noknacoBa e€TanoHHa MaTpuus, FOpM3OHTanNbHa KOHKaTeHauis MaTtpuub, rMajke HaBYaHHA, 3allyMneHi
eTanoHHi MaTpuui, 4OBra eTanoHHa MaTpuu4, y3aranbHeHUi NOKIacoBUii ETanNOH.

AHHOTauuA. N3yyaeTca BO3MOXHOCTb ONTUMU3ALMN BEPOATHOCTHOW HEWPOHHOM CETU Ha OCHOBE
apdekTMBHOrO 00y4aoLeEro MHoxxecTea. OBbIMHO 0byvaloLee MHOXECTBO AaHHbIX ANsl BEPOATHOCTHOW
HEWPOHHON CEeTU npeacTaBnaeT coboW maTpuly, YbM CTONOLBLI COOTBETCTBYIOT Kraccam. Ecnu kakablii
Knacc umeeT Nullb 0AuH cTonbew, aTa MaTpuLa Ha3bIBAETCA NOKNACCOBON 3TANOHHOW MaTpuuen. OaHako
NpoCTasi apxXUTEKTypa BEPOATHOCTHON HEMPOHHON CETU HE O3HAYAET, YTO KaXKAbIM KNacc AOIDKEH ObITb
npeacTaBneH 0gHMM 3TanoHOM. Bo-nepBbix, Anana3oH 3Ha4YeHWIn NPM3HAKa Knacca MOXET ObITb CIMLLKOM
WwmMpokum. Torga kenatensHo pa3buTb €ro Ha N0AAMAanasoHbl, KAKALIA U3 KOTOPbIX 4ACT CBO& cpeaHee, u
Takum obpasom OyaeT cpopmMUpPOBAHO HECKONLKO STANOHOB ANA AAHHOTO knacca. Bo-BTopbix, Mpu3Hak
Knacca MOXET MMETb KOHEYHOE KOJIMYECTBO 3HAYEHWUW, rAe KaKgoe 3Ha4YeHWe MMEET OAMHAKOBYHO
3HAYMMOCTb. Toraa Ob110 Obl HEKOPPEKTHO BLIYUCAATL CPEAHEE M UCMONb30BaTh €r0 B COOTBETCTBYIOLLEM
NnoKnaccoBoM atanoHe. Moatomy wm3ydaeTcs, uenecoobpasHowW nu OyaeT KOHKaTeHauus 3TanOHHbIX
MaTpuUL, B AJIMHHYIO 3TANOHHYIO MaTpuly. PakTMUEeCkn Lenb NCCnegoBaHns COCTOMT B YCTAHOBMEHUN TOTO,
angetca nu 9PPEKTUBHBIM NOCTPOEHUE BEPOATHOCTHLIX HEWPOHHbLIX CETEW Ha ANMHHBLIX 3TanOHHbIX
MaTpuuax. Kputepuem achbpekTMBHOCTU ABNSAETCA NPOU3BOAUTENBHOCTL BEPOATHOCTHOW HEMPOHHOI CETH,
T.€. €& TOYHOCTb WM NpPOUEHT OowunboK. [Ona A[OCTWXEHUA 9STOW LEenu NpOoW3BOAWUTENbHOCTb
BEPOSATHOCTHON HEWPOHHON CETU OLEHMBAETCHA Ha Ccryyae, Korga Kracc OMnMCLIBAETCA HECKONbKUMMU
sTanoHamu. [anbwe BepOATHOCTHbIE HEWPOHHbIE CETU TECTUPYIOTCA AN ABYX MOACHyYaeB: Korga
00BEKTBI, KOTOPLIE NOAAIOTCH HA BX0OA, TEHEPUPYIOTCA NPU Pa3HbIX KNACCOBbIX 3TAN0oHax, U Korga 00 bekThl
reHepupyotca npu 00OBLWEHHOM MOKNACCOBOM 3TanoHe. B KOHUE KOHLOB, yCTaHaBAMBAETCA, 4TO
00y4YeHne BEPOATHOCTHbIX HEMPOHHBIX CETEN HA NOKNACCOBOM 3TANOHHON mMatpuue (Mony4eHHON unu Ha
OCHOBE YCPEAHEHMHA MO MMEKLMMCH STANOHHbIM MAaTPULAM UKW NPOCTO NMPU UCMOMb30BAHWUM OAHOTO
aTanoHa Ansa Kakgoro knacca) senserca bonee apdekTUBHbIM, korga 06bekTbl ANa Knaccudukaumm He
HacnegylT HMKAKUX YUCIOBLIX CBOWCTB KMAacCOBbIX 3TanoHoB. W HaobopoT, korga oObekTbl And
Kknaccudukaymm Moryt obnagatb HEKOTOPbIMU BbIPA3UTENbHLIMU YUCITOBLIMU CBOMCTBAMM HECKOIbKMX
KNacCoBbIX 3TaNOHOB, TOrga 00ydYeHWe BEpPOATHOCTHbLIX HEWPOHHbIA CETEW Ha ANMMHHbLIX 3TaNOHHbIX
mMaTpuuax dasnsetrca 6onee addekTuBHbIM, 0B6ecneunBas 3HAYWUTENLHO BbICLIYKD TOYHOCTL. MeToa
rnagkoro o0ydeHnsa ans ynyyweHuss Npou3BoanTENbHOCTM OKa3bIBAETCA HEAPIDEKTUBHLIM.

KniouyeBble crnoBa: 3ajada knaccudpukauuum, BepoOATHOCTHAs HEWPOHHAA CeTb, 3TanoHHas
MaTpuua, NOKnaccoBas dranoHHas MaTpuua, ropu3oHTansHasa KOHKaTeHaumsa Matpud, rnagkoe odyyexue,
3aLWyMSIEHHbIE 3TANOHHbIE MATPULbI, ANIMHHAA STanoHHaa MaTpuua, 000BLLEHHBIN NMOKNACCOBLINA 3TANOH.

Probabilistic neural networks (PNNs) are a very powerful tool for object state classification
and diagnostics [1, 2]. They are much faster than multilayer perceptron networks: PNNs are trained
extremely fast and they rapidly operate on objects (i. ., classify them). Another merit is that PNNs
are relatively insensitive to outliers. The accuracy of PNNs are comparable to that of other
feedforward neural networks [1, 3, 4]. As PNNs approach Bayes optimal classification, they can
be even more accurate than multilayer perceptron networks. This is especially useful when objects
to be classified have up to a few tens of features [4, 5].

Commonly, the training dataset for a PNN is just an N xM matrix whose columns
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represent classes. In fact, this is the pattern matrix in which column m is composed of the most

expected feature values representing class m, m =1, M . However, the class may have several

patterns that can differ even in one feature value. Is making thus the pattern matrix as an average
over class patterns optimal? Obviously, it depends on the classification problem and its conditions.

Background and analysis. The PNN has a simple architecture. It has two layers between
the input and output layers. The weights in the pattern layer are determined by the pattern matrix.
Thus, the pattern layer contains one neuron for each case in the training data set. Along with that,
the target values are stored also. The Euclidean distance of the test case from the neuron’s center
point is computed and then the radial basis function kernel function is applied [1, 2]. In the
summation layer, the pattern neurons add the values for the class they represent [2, 6]. Finally, the
output layer compares the weighted scores for each target category accumulated in the pattern
layer and the largest score corresponds to the target category predicted by this PNN [3, 6].

This simple architecture does not imply that the class pattern must be single. The reason
for this can be described in two cases. First, the range of values for a class feature can be too wide.
Then it is desirable to break it into subranges, each of which will give its own average and thus a
few patterns for this class will be formed. Second, a class feature can have a finite number of its
values, where every value has the same importance. Then it is impossible (at least, it would be
incorrect) to calculate an average and use it in the respective single class pattern [3].

Whether it is efficient to use a concatenation of pattern matrices is an open question. The
matter is that the criterion of the concatenation is not yet substantiated. On the one hand, wide
ranges of input objects to be classified could be handled by the smooth training effective for two-
layer perceptrons [7], although it is not yet proved to be effective for PNNs. The smooth training
implies building the training set with increasingly noised matrices obtained by adding normal noise
to the pattern matrix, where the noise is just a model to generate a wide variety of the class feature
values. Then a long pattern matrix is built by concatenating single class pattern matrices, each of
which corresponds to a definite noise level. On the other hand, the initial single class pattern matrix
(without noise), which is an estimation of the expected pattern matrix, still can be used for training.
The case with a few pattern matrices initially given slightly differs from this, but there are also
two ways to do: either averaging over the pattern matrices or concatenating them in to a long
pattern matrix.

The goal and tasks to achieve it. The goal of the research is to ascertain whether it is
efficient to build PNNs on long pattern matrices. The criterion of the efficiency is performance of
the PNN, i. e. either its accuracy or percentage of errors. To achieve the goal, the PNN performance
will be studied on the case when the class is described by a few class patterns. The PNNs are to be
tested for the two subcases: when objects generated by different class patterns are fed to the input,
and when objects are generated by a generalized single class pattern. Additionally, the method of
smooth training will be attached for the subcase of the generalized single class pattern. Every result
with the long pattern matrix will be compared to the respective result with the single class pattern
matrix.

Different pattern matrices. Let the single class pattern matrix be an N xA/ matrix

b ~y(100-E(N,M))+1
" 101

, (1)

where E(N , M ) isan N xM matrix of pseudorandom numbers drawn from the standard uniform
distribution on the open interval (0;1) and function \u(x) returns the integer part of number x

(e. g, see [8]). Consider K class patterns, each of which is described by an N xM matrix P, :

P, =P, +05-O(N,M)+0,, 1ep{®(1, M), N,1} for k=1 K, 2)
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To test the performance of PNNs (5) and (7), 500 test instances are randomly generated.
Then the percentage of errors is

v(S)=4/(5-M), (8)

where § is a PNN and ¢ is a total number of misclassifications. Obviously, error percentage (8)

depends on the standard deviations in (2) showing how the pattern matrices are formed and it also
depends on how test instances are generated. So, let

6€{0.2,03,04,0.5} and o, =0/2. ©)

The standard deviation value, which factually indicates the strength of variations added to the
initial pattern matrix, will be varied from 0 to one of the four values in (9) by a step of one tenth
of & . The test instance is an N xM matrix

P =P _+0-O(N, M)+, repy®(L, M), N,1 (10)
3

by an integer k. randomly chosen between 1 and K .

Fig. 2 shows error percentage (8) versus ¢ for the examples with only two pattern matrices
for the long pattern matrix (square-dotted polylines) and for the averaged pattern matrix (dash-
dotted polylines), where the six rows correspond to the following pairs of the number of features
and the number of classes:

M
Il
00 B~ 0N

NS

7,
7,
7

2

2222z

11,
11,
11

2

The averaged polyline for the long pattern matrix is shown as a thicker circle-dotted polyline, and
the averaged polyline for the averaged pattern matrix is shown as a thicker dash-dotted polyline.
There are five polylines at each & (separately for the long pattern matrix and for the averaged
pattern matrix). The examples with K =4 are shown in Figure 3 in the same style. In both example
cases, the thick circle-dotted polyline is below the thick dash-dotted polyline. This means that the
PNNs trained on the long pattern matrices perform with a lesser inaccuracy.

Another version of the test instance is when an object is generated by a generalized single
class pattern, not “adhered” to a pattern like in (10). In this subcase, the test instance is an N xAM
matrix

Ptest:PO+G-®(N,M)+Gshiﬂ-rep{@(l,M),N, 1}. (11)

Note that matrix (11) is formed in the same manner as a pattern matrix by (2). Figure 4 shows error
percentage (8) versus ¢ for the examples with only two pattern matrices (using the same styles of
the polylines in Fig. 2), where test objects are generated by a generalized single class pattern
according to (11). Fig. 5 shows the examples with K =4 . Unlike the previous two examples with

test instances (10) for £, € {I,_K} , the subcase of the generalized single class pattern implying test

instances (11) does not show any efficiency in using the long pattern matrix. Indeed, the thick
circle-dotted polyline in Fig. 4 and 5 is generally above the thick dash-dotted polyline.

90 Romanuke V.V., Yegoshyna G.A., Voronoy S.M.
Training probabilistic neural networks on the single class pattern matrix and on
concatenation of pattern matrices















Hayxogi npaui OHA3 im. O.C. Ilonosa, 2019, Ne 2

Therefore, it is better to classify test instances (11) by simpler PNNs trained on averaged
pattern matrix (4), which is the single class pattern matrix. Some exclusions may occur just as that
in row 4 and column 2 (and, particularly, in column 1 of the same row) of Figure 5 corresponding
to a binary classification problem of objects having 11 features. However, they are computational
(pseudorandom) artifacts rather than a statistically reliable result.

Smooth training for PNNs. Consider the possibility to train PNNs to fit classifying test
instances (11) by building a long pattern matrix in another way. This is the method of smooth
training, which was experimentally proved to be rather effective for two-layer perceptrons [4, 7],
at least in classifying objects having not a great number of features or small images. Smooth
training implies building a training set as a concatenation (which, later on, is going to be a shuftled
mixture of training samples, not arranged as in the concatenation) of a “pure” pattern matrix and
a series of “noised” pattern matrices. The strength of the noise added to the pattern matrix is
successively increased. In the case of smooth training for PNNSs, the long pattern matrix is formed
using the “pure” pattern matrix as single class pattern matrix (1) by the following concatenation
rule:

P :{PO, ) } (12)

A

with a noised pattern matrix P, ; at the j-th level of the noise by F* such levels, where matrix

P, , is formed similarly to test instances (11), 1. e.

P, =P, +%-c-®(N,M)+%-csmﬁ -1ep{@®(1, M), N,1} for j=1,F. (13)

Just as it is in operations (3) and (6), the operation on the right side of (12) is a horizontal
concatenation. Obviously, in training on long pattern matrix (12) with noised pattern matrices (13),
a long target matrix

F+1

’I‘smooth = {I}j:l (14)
is used (this is the horizontal concatenation), whereupon a PNN

Ssmooth =1 (]‘)smooth b Tsmooth ) (l 5)

is built. Fig. 6 shows error percentage (8) versus ¢ for the examples of PNN (15) compared to the
error percentage of PNNs

S, =1(Py, T) (16)

trained on single class pattern matrix (1). As previously, the error percentage for the long pattern
matrix (with eight noise levels) is shown by square-dotted polylines, and the error percentage for
the single class pattern matrix is shown by dash-dotted polylines (each of the six rows corresponds
to the pairs of the number of features and the number of classes mentioned above). The averaged
polyline for the long pattern matrix is presented by a thick circle-dotted polyline, and the averaged
polyline for the single class pattern matrix is presented by a thick dash-dotted polyline. It is quite
clear that PNNs trained smoothly do not have better performance than “ordinary” PNNs (16)
trained without any complications (concatenations). Nevertheless, the advantage of the simpler
PNNSs here is less significant than that in the case of the averaged pattern matrix (Fig. 4 and 5).
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than PNNs trained on the single class pattern matrix simplified owing to averaging over the
available (known) class patterns. On the other side, when generation of test objects does not
include any “prints” of the patterns, Fig. 4 and 5 confirm that the simplest PNNs (those which are
trained on the single class pattern matrix) perform even slightly better than the PNNs trained on
long pattern matrices. Furthermore, the smooth training method appears inefficient in improving
the PNN performance for classifying such “pattern-print-less” objects. Inasmuch as it is not always
possible to predict the exact type of the object at the PNN input, the training method based on
concatenating different pattern matrices cannot be certainly affirmed to be efficient.

Therefore, it is efficient to train PNNs on the single class pattern matrix (obtained either
by averaging over the available pattern matrices or just by using one pattern per class) when the
objects to be classified do not inherit any class pattern numerical properties. On the contrary, when
the objects to be classified may have some distinct numerical properties of a few class patterns,
then training PNNs on long pattern matrices is more efficient ensuring noticeably lesser percentage
of errors (i. e., a higher accuracy).
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