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Abstract. The article is devoted to the development of methods for improving the spectral efficiency
of fiber-optic transmission systems in terms of optimizing signals in a narrowband channel. The channel
width is conventionally taken in the range of 50 — 100 GHz. The following conditions are also considered to
be fulfilled: the signal at the input has approximately circular polarization; the instantaneous power of the
signal is relatively small, which makes it possible to neglect nonlinear effects such as four-wave mixing or
phase self-modulation; the fiber profile in the refractive index is strictly stepped; fiber operates in single
mode; the core material is an isotropic medium; the dependence of the attenuation coefficient in the
frequency in the considered range can be considered a constant function. Thus, the considered model of
signal transformations in a fiber is reduced to its deformation due to material dispersion. The leading
optimization criterion is the minimum of the reduced base. This concept was introduced earlier in the works
of the authors. This criterion requires minimizing the product of the effective spectral width on the
transmission side by the effective signal duration on the receiving side. The solution of the problem in
general form is given - in the formulation of the isoperimetric problem of the calculus of variations. It is shown
that the solution of the optimization problem by the minimum criterion of the reduced base can be reduced to
the problem of optimizing the signal base in the classical sense. A general solution of the isoperimetric
problem is given as functions of a parabolic cylinder. Also presented are particular solutions of the
optimization problem on parametric families from the Nyquist pulse class. The obtained solutions show that
the optimal values of the variable parameters practically do not depend on the carrier frequency and on the
length of the regeneration section. This allows the extension of the optimal solutions obtained for a single
narrowband channel to the case of multichannel fiber-optic transmission systems using frequency (spectral)
multiplexing.

Key words: reduced base, isoperimetric problem, optimal optical signals, spectral efficiency,
numerical optimization methods, Gaussian pulse, Nyquist pulses.

AHoTauif. CTtaTrs npucBAYeHa pO3BUTKY METOAIB MNiABULLEHHST CrnekTpanbHOi edgeKTUBHOCTI
BOMOKOHHO-ONTUYHMX CUCTEM MNepeaadi B YacTUHI ONTUMI3aLil curHanis y By3bKONONocHOMY kaHani. LunpuHa
KaHany yMoBHO npuimaeTbca B Mexax 50...100 ITu. Takox BBaalOTbCH BUKOHAHUMW YMOBW: CUrHan Ha
BXOAi Mae MpubnN3HO KOMOBY MONSPU3aLito; MUTTEBA MOTYXKHICTb CUrHamy BiAHOCHO Mana, WO [03BOsisie
3HEXTYBATU HEMiHINHMMK edekTamn TUNy YOTUPUXBUITLOBOIO 3MilLeHHst abo ha3oBoi camomogynsuii;
npodinib  BOMOKHA 3a KOoedilieHTOM 3aroOMIEHHs1 CTPOro CTYMiHYaCTWUWA; BOJIOKHO (DYHKUIOHYE B
OZIHOMOJOBOMY pexXuMi; maTepian cepueBMHUM € I30TPOMHUMM CepefoBULLIEM; 3amnexHICTb KoedilieHTa
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3aracaHHsl 3a 4YacTOTOK B PO3rMNAHYTOMY Aiana3oHi MOXHa BBaXaTu NOCTIMHOW dyHKUie. TuM camnm aaHa
MoZenb MNepeTBOPEeHb CUrHany Yy BOJMOKHI 3BOAMTLCA A0 Woro Aedopmadii BHAcnigok matepianbHOT
avcnepcii. MpoBigHMM kpuTepiem onTuMmisauii obpaHo MiHiMyM npuBeaeHoi 6a3un. [laHe MOHATTA BBELEHO
paHiwe B poboTax aBTopiB. Lien kputepii Bumarae MiHimisyBatn 4OOYTOK eheKTUBHOI LUMPUHKU CriekTpa Ha
CTOPOHI Nepefayi Ha edeKkTUBHY TpMBaniCTb CUrHarny Ha CTOpPOHi npuiomy. HagaeTbcs pilleHHs 3agadi B
3aranbHOMy BWUIMAA4 - B MOCTAHOBL i30NepMMETPUYHOI 3adadi BapiauiiHoro ob4vmcneHHs. NokasaHo, Lo
PiLLEHHS 3adadi onTUMiI3auii 3a KpuTepieM MiHIMyMy NpuBefeHoi 6a3n MOXHa 3BECTU A0 3adadi onTumisauii
6a3n curHany B KIacM4HOMY CeHci. HagaHo 3aranbHe pilleHHs i3onepuMeTpyyHOi 3agadi y BUMMSAi oyHKLUIN
napaboniyHoro uuningpa. TakoX HaJalTbCsl OKPEMi pilleHHst 3aJadi onTuMisauii Ha napameTpu4HuX
cimencTBax 3 knacy imnynbciB Hariksicta. OTpuMaHi piLleHHSA MOKa3yoTb, WO ONTUMAIibHi 3HAYEHHS 3MiHHMX
napameTpiB MpakTMYHO He 3anexaTtb Bif Hecy4yol 4acToTu i Bi OOBXWHW pereHepauiiHol aingHku. Lle
[03BOMSE NOLWMPUTM ONTUMAarbHI PilleHHsl, OTpMMaHi ANns O4HOro BY3bKOCMYFOBOrO KaHany Ha BUMNadok
GaraTtokaHanbHMX BOJSIOKOHHO-OMTUYHUX CUCTEM Mepefadi 3 BUKOPUCTAHHSAM 4acTOTHOro (CnekTparibHOro)
MYNbTUNIEKCYBaHHS.

KniouoBi cnoBa: npuBegeHa 0asa, i3onepMMeTpuyHa 3agada, ONnTMMAarbHi OMTWMYHI  CUrHamw,
cnekTpanbHa eheKTUBHICTb, YMCenbHi MeToau ONTUMI3adii, rayccis iMnyrbe, iMnynscy HawksicTa.

AHHoTaumA. CTtaTbs NOCBsILLIEHA Pa3BUTUIO METOAOB MOBbLILIEHUS CMEKTpanbHON 3¢hdEKTUBHOCTH
BOMOKOHHO-OMTUYECKMX CUCTEM Mepedayn B 4YacTu ONTUMU3ALUMW CUrHaNoB B Y3KOMOMOCHOM KaHane.
WnpnHa kaHana ycnoBHo npuHumaetca B npegenax 50...100 [Mu. Takke cuuTaloTCs BbINOSTHEHHBIMA
YCINOBMS: CUrHam Ha BXxoge WMeeT NpuONM3NTENbHO KPYroBYH MONSPM3auuio; MrHOBEHHAst MOLLHOCTb
curHana OTHOCUTENbHO Mana, YTO MO3BONSIET MpeHedpeyb HenuHenHbiMK  3ddekTamm  TMna
YeTbIPEXBOMHOBOIO CMeELUeHUs unn (asoBon camMoMoaynsuuu; nNpodunb BOMOKHA MO KO3MULMEHTY
NpenomMrieHnss CTPoro CTyneH4YaTblil; BOSMOKHO (YHKUMOHMPYET B OAHOMOJOBOM peXxume; maTepman
CepALeBUHbl SBMSIETCA  U30TPOMHON Cpeaon; 3aBUCUMOCTb KO3(dULUEHTa 3aTyxaHus no 4vacrtote B
paccmaTtpvBaeMoM Amana3oHe MOXHO cuuTaTb MOCTOSIHHOW pyHKUMen. Tem cambiM paccMmaTtpuBaemas
Mogenb npeobpas3oBaHWii cUrHana B BOJSIOKHE CBOAMTCH K ero gedopmaumv BCreacTBMe MaTepuaribHOM
avcnepcuun. Begywum kputepuem onTuMmnsauummn BblIOpaH MUHUMYM npuBedeHHon 6a3bl. [JaHHOe MoHATMe
BBEAEHO paHee B paboTax aBTOpOB. JTOT KpPUTEpPUA TpebyeT MUHUMU3MPOBATb MPOU3BEAEHME
3(P(PEeKTUBHOM LUMPUHBLI CMEKTpa Ha CTOpPOHEe nepedayn Ha 3(PeKTUBHYO ANUTENbHOCTbL CUrHana Ha
CTopoHe npuema. [laeTcs pelleHne 3adayn B oOLem BMAE — B NMOCTAaHOBKE N30NEPMMETPUYECKON 3a4aum
BapuaLMOHHOro ucuyucneHus. okaszaHo, YTO pelleHne 3afavv onTUMU3auMuM MO KPUTEPUIO MUHMMYMa
npvBeaeHHoON 6a3bl MOXHO CBECTM K 3adaye onTumusaumm 0asbl curHana B Knaccuy4eckoM cmbicne. [aHo
obLllee pelleHNe M30MEepPUMETPUYECKON 3adavM B Buae (yHKUMA napabonuyeckoro uunuHgpa. Takke
NPUBOAATCA YacCTHble pelleHuMs 3ajadyu OnTUMM3auuu Ha napaMeTpuyeckmx CemMencTBax M3 Knacca
uMnynbcoB HawnkeBucta. onyyeHHble pelleHuUsi NokasblBalT, YTO ONTUMAaribHble 3HAYEeHUSI BapbuUpyeMblX
napamMeTpoB MPaKTUYECKM HE 3aBUCAT OT HECYLLEW 4acToTbl U OT OJIMHbI pereHepaLnoHHOro yyacTka. JTo
No3BOISieT PacnpocTpaHUTb OMTUMarbHbIE peLUeHUs, NoNyYeHHble ANd OOHOro Y3KOMOMOCHOro KaHamna Ha
cnyya MHOrokaHanbHbIX BOMOKOHHO-OMTUYECKMX CUCTEM nepefadn C WCMNONb30BaHWMEM YacCTOTHOMO
(cnekTpanbHOro) MynbTUMIIEKCUPOBAHMS.

KnioueBble crnoBa: npuBefeHHas 6asa, nonepumeTpuyeckas 3agada, onTUmarnbHble ONTUYECKME
curHansbl, cnektpanbHasa 3(peKTUBHOCTb, YNCHIEHHbIE METOAbI ONTUMU3ALINK, rayCCOB NUMMYNbLC, NMMNYIIbChI
Hawksucra.

The urgency of the problem of increasing the spectral efficiency of fiber-optic transmission
systems (FOTS) was considered in the works of the authors [1...3]. As one of the methods for
increasing the bandwidth of FOTS, we considered a group of solutions called signaling methods
[4]. The essence of these methods is reduced to the formation of alphabets of signals, providing the
possibility of transferring more than one bit of information in one pulse. The possibility of
generating short optical signals of a given structure was considered in works [5, 6]. At the same
time, the problem of optimizing optical signals by various criteria has been little studied. In
narrowband bandwidth FOTS channel AF transmission speed will be limited by the pulse duration
AT . Obviously, the impulse with a minimum base will be optimal: B, = AT - AF — min (further —

initial base). The task of optimizing signals by this criterion was solved in the classical theory of
signals, for example, in [7]. Certain specifics of solving optimization problems as applied to FOTS
are caused by active interaction of the signal with the transmission medium. In this case, the optical
pulse (OP) is distorted due to the nonuniformity of the dependence of the attenuation coefficient in
frequency, as well as due to dispersion. The consequence of these causes is the elongation of the OP
as it propagates through the optical fiber (OF). Shown in [8], that for the narrowband channel of
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FOTS (width of about 50...100 GHz), the energy spectrum is an invariant characteristic of the OP:
the deformation of this function can be neglected. Therefore, the concept of the minimum of the
reduced base is introduced [3]:

B(L)=AT(z=L)-AF(z=0) > min, (1)

where AT — OP duration characteristic; z — the distance from the point of entry OP in OF; L — the
length of the regeneration section (RS); AF' — OP spectrum width characteristic.

The purpose of this article is to develop methods for solving optimization problems of OP
by the criterion (1) — the minimum of the reduced base.

For the narrowband channel of the FOTS, we suppose that: the signal at the input of an
optical fiber has approximately circular polarization; the instantaneous power of the OP is relatively
small, which allows one to neglect nonlinear effects such as four-wave mixing or phase self-
modulation; the OF profile in refractive index is strictly stepped; the OF operates in single mode;
the core material of the OF is an isotropic medium; and the dependence of the attenuation
coefficient in frequency in the considered range can be considered a constant function.

In this case, the effects of the interaction of the OP with the medium are reduced to the
material dispersion in the core of the OF [9]. Then the model of OP distortion in the medium of OF
is represented as a dispersion of group velocities [10]:

U(t,z) = 2—171 [, (Q)exp( jQt— jz %k{j}Qz)dQ : )

where U(¢,z) — low frequency component of the signal (LFC) at distance z from the entry point in
the OF; G,(€2) — spectral density of OP at the time of entry into the OF; Q — frequency deviation
(within 50 — 100 GHz) relative to carrier frequency @, (which has an order of 160...375 THz); k.

— second derivative of the wave number at point ®,, which is expressed through the values of the

} 3)

Next, we replace the designation of the parameter frequency deviation 2 by , realizing
that the carrier frequency is moved to a point m, =0 (however, the numeric values of the parameter

derivatives of the refractive index:

ko = 1{2 dn(©)
c do

d’n(m)

0 P
“0 do

k'*) taken at the real value of the carrier frequency of the order of 160 — 375 THz). We will also use
the notation for expression (3): k) =k, .

Dependence (2) shows that the LFC OP at distance z is expressed as the inverse Fourier
transform of the spectral density in the form:

G(z,0) = G,(w) exp(— j%zkomzj =G,(0)H (), (4)

where H(w)= exp(— Jj %zko(ozj — frequency transmission coefficient (FTC) of OF.

In the following, we will use the following two positions.

First, the solution of optimization problems for the initial and reduced base (1) is equivalent
to the solution of the optimization problem for the functional [3]:

aB” = aATPAF® — min, (5)
where o and B — arbitrary positive numbers.

Second: the effective duration of the OP in the time domain is expressed through the
derivative of its spectral density [11]:
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2 _L T ' 2
AT = jw [G'(@)] do. (6)

As characteristics of the OP, we consider three main functions, which are expressed in terms
of spectral density:

1%,
E(G)= ﬂj G*(0)do, (7)
AQ*(G) = ﬁ T(x)sz(w)dw, (8)
AT*(G) = i j [G'(w)]do, 9)

where E(G) — energy of OP; AQ’(G) — effective spectral width of OP; AT*(G) — effective
duration of OP.

Taking into account position (5), the dimensional coefficient 1/2n can be neglected. Next,
we fix the energy of the OP, assuming its constant E£(G) = E = const(G). You can also fix any of

the parameters AQ’(G) or AT*(G), and optimization is performed on the free parameter. So,
assuming equal to the effective duration of the OP (9) AT*(G) = AT = const(G) we come to the
formulation of the variational problem:

AQ*(G) » min(G), E(G)=E =const(G), AT?*(G)=AT =const(G), (10)

where are expressions for functionals are given by formulas (7...9). The problem in formulation
(10) is reduced to the classical isoperimetric problem of the calculus of variations. Its statement is
given in the monograph [7]. There's also this problem is reduced to a functional optimization

[@(.6,.6,)do = [[06,(©)+2,G} @)+, ]G, (@) o - min!, (10

where A, and A, — free parameters determined by isoperimetric conditions (7) and (9). After
determining the first variation of the functional (11), the solution of the problem is reduced to the
solution of the Euler differential equation:
FGy(w) _ (0 +1)
ow’ A,
It is interesting that in [7] the final solution of the problem in the form of a concrete optimal
function was not given (the author limited himself to obtaining a theoretical numerical lower bound

for the values of the optimal base). With reference to the applied problem under study, the solution
of equation (12) is obtained in a closed form [3]:

Gy(0)=C,D, ( (0)\/3%)+ C.Dy,
2\ 2

Gy()=0. (12)

jco\/i‘%), (13)

a/b-1) ﬁ—n(

where D — parabolic cylinder functions (for example, [12, c. 1078]); a=x,, b=1/1A,.

The spectral density in the form of (13) is difficult to analyze, and it is even more difficult to
reproduce a real signal with such a frequency response. At the same time, the function in the form
of the spectral density of a Gaussian (“bell”) pulse gives an obvious particular solution to equation
(12)

Gy(0) = aexp(—-po’), o= % ., B= _17H .

The above dependencies relate to the case of optimizing the initial base of the OP. The
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solution of the optimization problem by the criterion of the minimum of the reduced base (1) or,
equivalently, by the criterion (5), requires certain clarifications. Taking into account the expression
(6) for the effective duration of the OP, formula (9) can be represented in the form:

AT*(G,z)= | HY )G, (0)Pdo+ [[H'(@)T G} (0)do=1,+1,. (14)
2n ®, 2n =
Where are the integrals /, and [, taking into account the dependence of FTC (4) can be
represented as

1T, L7
I=o JOO[GO (o) do, 1, =z J 0’Gy (0)o. (15)

From expressions (15) the following are clear: the integral /, — the value of the effective duration
of the OP at the time of entry into the OF, and the integral /, — the increment of the effective
duration of the OP at a distance from the point of entry into the OF.

The optimization problem by the criterion of the reduced base is, generally speaking, more
difficult from an analytical point of view than the optimization problem by the criterion of the initial
base. In some cases, the solution of the first of them allows us to simplify the following theorem.

Let there be some function G(®), delivering the minimum of the isoperimetric problem (10)

in the sense of minimizing the initial base. Then, up to constant coefficients, the same function
delivers the minimum of the solution of the isoperimetric problem in the sense of minimizing the
reduced base:

AT*(G,z) » min(G), E(G)=E =const(G), AQ’(G)=AQ = const(G). (16)

To prove the theorem, the optimized functional (11), taking into account dependencies (14 —
15), is represented as:

[@(0.6,.6,)do= [1076,*(0) +1,G (@) + K2[240°G, (@) + G, (0 Ijdo > min! (1)

In the general case, equating to zero the first variation of the functional, depending on the
function under study and its first derivative, is given in the form of the equation [13]:

o _0|od =0. (18)
0G, Jw\ oG,
Taking into account the form of the integrand in the functional (17), the Euler equation (18)
is reduced to the form:

d’Gy(0) [0 (+27kX)+A,]
do’ x,
A, oM M+ 27kK)
1+2°k0%, 7 A, X,
reduces to equation (12), which proves the theorem.

In fact, the solution in the form of a Gaussian pulse does not exhaust the possible solutions
of equation (12). The proved theorem allows us to use solutions of the optimization problem by the
criterion of the minimum of the initial base as initial approximations to the solution of the
optimization problem by the criterion of the minimum of the reduced base.

In this case, the optimization problem is considered by criterion (1), when the optimized
function is specified in an explicit parametric form: G, (®)=G(w,q,,a,,...,a, ), Wwhere

Gy (). (19)

Denote A, = , but then equation (19), obviously, in its form
2 q y

o ,0ly,..., 0, — free (variable) model parameters. Functions of this type may not be solutions of the
Euler equations (12) or (19) at all. However, they may have additional optimal properties. In
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particular, the Nyquist pulses [14] possess the property of high selectivity in the time domain. What
is important in our case, the spectral density of such pulses can be expressed by functions finite in
the frequency domain. That is, the Nyquist signals can be considered as optimal OP from the point
of view of the selectivity property in the frequency domain. It is important that there are methods
for the physical reproduction of Nyquist pulses in the optical range. At least, with sufficient
accuracy it is possible to reproduce pulses with a rectangular spectral density [15]. Such signals are
called in [14] Nyquist-Kotelnikov pulses. For parametric families, the optimization problem is
simplified and reduces not to the optimization problem for functionals, but to the optimization
problem for functions of many variables. The equations for the general solution of the optimization
problem in this case can be represented as a system:

0
oo

m

[1G'(@,0, 0500, Pdd=0, m=12,.,M -2, (20)

1 % 1 7
E(G)=% J.Gz(w,ocls,az,...,ocM)dw; AQZ(G)=Z J.cosz(w,a],,ocz,...,ocM)dw. (21)

Which of free parameters a, ,a.,,...,a,, include in the subsystem of equations (20), and

which ones to be determined by equations (21) depends on the conditions of the problem being
solved and on “mathematical convenience”: in this problem it is important that the integrals in the
system of equations (20...21) are taken analytically or at least numerically at high stability of
computational schemes.

Let us consider the solution of problem (20...21) using the example of one-parameter [14]
Nyquist pulses with a trapezoidal spectral density

U, |oj<o,
U —
Gy(w) = E(OZ;M} (DAS|03|£033 (22)
C
0, |0)|>ooB

and with a spectral density in the form of a raised cosine

U, |o<o,

Gy(w) = %[lJrcosW} oaAS|(o|S(oB, (23)
C
0, |of>a,

where parameter o is called the roll-off factor (ROF) for function (23). For both functions (22) and
(23) this parameter is defined in the same way:

1
(X:(wc_(’)/t)/wc=(COB_(DC)/(DC:E((DB_(DA)/(DC~ (24)
The graphs of functions (22) and (23) for different values of the parameter are given in
Fig.1.
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Figure 1 — spectral density graphs
a) spectral density graphs of (22); b) spectral density graphs of (23).
Points A, C, B correspond to the values of frequencies ® ,,®.,®, . Figures are given for coefficient

values a=0;0,5; 1. In the figures conditionally ®, =1,U =1.

Both spectral densities (23, 24) in the transition region (®, < ® < ®,) possess the property
of odd symmetry and, therefore, the corresponding signal functions satisfy the first Nyquist
criterion [16].

Note that some of the variable parameters in the optimization problem (20...21) may be
subject to additional conditions, as a rule, in the form of inequalities. Such conditions can follow
from the physical (technical) essence of the problem being solved, as well as from the definition of
functions G (w,a,,a,,...,a, ). This class of conditions allows solving the problems of root
selection of equations (20...21), if there are several such roots. For functions (23, 24), the
restriction for ROF:

0<a<l. (25)

Taking into account the parity and finiteness of the spectrum (23), also taking into account
the position (5), the integrals appearing in the conditions of the problem (20...21) can be calculated
within [0, ®,]. Medium frequency parameter ®,. will be considered fixed for all OP. As a
"standard" of energy, we use the energy of the Nyquist-Kotelnikov pulse (with a rectangular
spectral density at o.=0). The energy of such a signal is obviously E, =U;o.. With an arbitrary
value of the free parameter o expression for signal energy (taking into account the exemption from
constant dimensional coefficients) can be written in the form:

w, | W,
E, =U? Id@+m [0, —0fdo|. (26)
0 cw,

Fair dependencies: o, =(1-a)o., ®, =(+a)o., which follow from definition (24). As a result

of integration by formula (26) and the reduction of similar ones, we obtain the condition of
constancy of energies:

1
E, = Ui(l — gajwc =U;®, = const. (27)

From condition (27) follows the dependence for the amplitude parameter, ensuring the constancy of
the energies:

3U,

Ul = : 28
s (28)
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We take into account that on the interval [0,®,] the derivative of the function (22) is zero. Then the
condition (20) for the parameter being optimized « =0 can be written in the form:

o U “}B 0 Ww,—0,) 8 Iiaw,

®
6 B

— (G ()] do=— = = =
oo, O-L[( ©)] oo 40’ ooy, oo 40’0 (3—a) O 20w, (3—a)

(’OA

Having performed the differentiation in the last expression, we finally obtain the equation:
oU; (20.—3)

200, (G—0)

which, with a nonzero denominator, has a unique solution a=3/2. As we see, the solution

obtained goes beyond the permissible interval (25). But on this interval, the function of the form
1/(a(3—0a)) is monotonically decreasing (Fig. 2, a).

9
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Figure 2 — Optimized graphs of functions
a) graph of the function 1/(a(3—a)); b) graph of the function 1/(a(4—a)).

Thus, the optimal criterion for the minimum of the initial base in this case is an OP with a
degenerate spectral density in the form of a triangular function with a =1 (Fig. 1.4, callout 1). This
confirms the proposition that “good” OPs should have a unimodal spectrum [17].

Trapezoidal spectral density (22) is considered here as a theoretical example. The real
reproduction of an OP with such a frequency response can hardly be carried out: the derivative of
the function (22) is discontinuous at the points », and ®,. The function in the form of a raised
cosine (23) is devoid of this disadvantage.

Omitting the intermediate calculations, we give the final results for this case. For the OP
energy we get the expression:

(’OA (’OB

E =U jd0)+l I {lﬁtcos
46
0 4

2
M do =U2(l—loc)0)
200, o4

whence, by analogy with expression (28), we obtain the dependence of the amplitude coefficient
equalizing the energy of the OP:

_ 4U;
4—a

The expression for the effective pulse duration is obtained in the form:

UZ
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From the expression (29) it follows that, up to a constant coefficient of optimization, the function
1/(a(4—a)) is subject to. Equating the first derivative of this function to zero gives the equation:
2(a—2)
24 N2 0
o (4—a)
which has a root a =2, that also goes beyond the interval (25). But as in the previous case, the
function 1/(a(4—0a)) monotonically decreases on the interval 0 <o <1, as shown in Fig. 2, b. So

9

in this case, the value o =1 is also optimal (Fig. 1, b, callout 1).

The most effective and universal methods of theoretical studies, apparently, are numerical-
analytical methods. They allow obtaining analytical expressions for relatively simple intermediate
transformations, and obtaining the final result, using elements of computational mathematics. In this
case, analytical transformations can significantly simplify computational algorithms.

In particular, for practical problems it is characteristic that the increment of the effective
duration of an OP as it propagates along the OF significantly exceeds its duration at the moment it
is entered into the OF. This means that in numerical schemes the value of the integral /, in
formulas (15) can be neglected. Then the optimization problem is reduced to calculating an integral
proportional to £ and further calculating the integrals

0/(a) = [0’G) (0,a)do, 0,(c)=0,(a)/E,, (30)

where the limits of integration [-B,B] are determined by the conditions of the particular problem
being solved. For functions (22) and (23), these limits are defined as: + B =twm, =*(1+a)o.. Note

that in this case the function optimization Q,(a) allows you to simultaneously optimize the OP by

the criterion of the minimum of the effective duration, and by the criterion of the minimum of the
effective width of the spectrum. You can also see that the resulting solutions will depend only on

the type of the function G,(w,a), but will not depend on the specific value of the dispersion
coefficient k,, not from the distance z. Also from the previous examples it is clear that the optimal
value of the parameter o invariant to the choice of the amplitude parameter U, and on the
dimension of the frequency scale.

Function optimization programs Q,(a) and Q,(o) are written in medium ScilLab and is
shown in listing 1. In calculations U, =1, o, =1.

Listing 1 — (23) function optimization program

// Raised cosine function

function nyq=nyquist_cos(UT, alpha, omega_c, omega);
w = abs(omega);
wa = (1-alpha)*omega c;
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wb = (1+alpha)*omega_c;
delt ba=wb - wa;
if alpha < 1.0D-10 then

if w < omega_c then

nyq = UT;
else
nyq =0
end
else
if w < wa then
nyq = UT;
else
if w > wb then
nyq = 0;
else
nyq = (UT/2) * (1 + cos(%pi*(w - wa)/(2*alpha*omega_c)));
end
end
end
endfunction

// Setting model parameters
UT=1;0om c=1;
// Preparation of the main cycle
alph = 0:0.01:1; m = size(alph,2);
Q1 _arr =zeros(m); Q2 _arr = Q1 _arr; dw =w(2) - w(1);
// Main cycle
fork=1:1:m
E=0;Q1=0;
w =[-2:0.01:2]; n = size(w,2); nk = zeros(n);
fori=1:1in
nk(i)= nyquist_cos(UT,alph(k),om_c,w(i))
E=E +dw * nk(i)"2;
Q1 =QI +dw * w(i)"2 * nk(i)"2;
end;
Q2=Ql/E;
Ql_arr(k) = Ql;
Q2_arr(k) = Q2;
end;
// Calculation and output to the console screen of min Q1 and arg min Q1
[Q1_mink] = min(Q1 _arr);
disp('Q1 min ="+ string(Q1)+' ; Alpha arg min = '+ string(alph(k)));
// Calculation and output to the console screen of min Q2 and arg min Q2
[Q2_mink] = min(Q2_arr);
disp('Q2 min ="+ string(Q2)+' ; Alpha arg min ="'+ string(alph(k)));
// Output function graphs
subplot(1,2,1);
plot2d(alph,Q1 _arr,style = color('blue'));
xgrid(3,1,3)
subplot(1,2,2);
plot2d(alph,Q2_arr,style = color('blue'));
xgrid(3,1,3)

The results of the program, as well as a similar program for the trapezoidal function (24) are given
in Fig. 3. Optimum function values Q,(a) and Q,(c) and variable parameter o are given in Table 1.

Graphs of optimal functions (22) and (23) in the sense of the function O, (o) are given in Fig. 4.

O 0))
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Figure 3 — Graphs of functions Q,(a) and Q, (o)

1 — for spectral density in the for m of a raised cosine;
2 — for trapezoidal spectral density

Table 1 — Optimal values Q,(a)and O, (a) and variable parameter o

Optimized function o =argminQ, minQ, o =argminQ, min Q,
Trapezius (22) 0,61 0,533333 0,41 0,39999
Raised cosine (23) 0,84 0,480182 0,55 0,32012
1 1
08 08
06 - 06
0.4- 0.4
0.2 0.2
0 , : : . T i i 0 , , , , , , : .
2 15 1 05 0 05 1 15 2 15 1 205 0 05 1 15 2

Figure 4 — Graphs of optimal functions (22, 23) by the criterion of the minimum of the reduced base

In this paper, the problem of optimizing optical signals by the criterion of the minimum of
the reduced base is investigated. The problem is solved in general form using the methods of
variation calculus. In particular cases, the task is reduced to the optimization of parametric families
of functions. The most effective in this formulation are numerical-analytical optimization methods.

The problem was solved for a narrowband channel with a bandwidth of about 50...100
GHz. At the same time, the obtained results allow us to conclude that the optimal values of the
parameters of optical signals are invariant to the length of the regeneration section and to the
frequency scale used. This allows the extgension of the the solutions obtained for one channel to the
case of multichannel transmission systems with frequency multiplexing.

In this article, the introduction and conclusion are written by the authors together. The
material on the use of numerical methods prepared by D.H. Bahachuk. The rest of the material was
prepared by N.A. Odegov.
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