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Abstract. Estimation of the service quality characteristics in a single-channel system with queue for
the packet network is often reduced to the determination of the Hurst exponent for self-similar traffic, after
which using the known Norros formula calculated average number of packets in the system. However, this
method does not allow for the set value of the Hurst exponent to have calculated the yet very important
characteristics of quality of service, such as the average delay time of packets in the storage buffer and the
service waiting probability of packet. In this work we propose a method for approximating the distribution
function of the states of the system and, on its basis, a formula for calculating the service waiting probability
in a single-channel system with a self-similar traffic.

Key words: service waiting probability, self-similar traffic, service quality characteristics, single-
channel system with queue.

AHoTauis. [ns nakeTHMX Mepex 3B’A3Ky 3acTOCOBYHOTb MaTeMaTWyHy MOZEenb caMonofidHoro
Tpadika, ane npu UbOMY He iCHye AOCTOBIPHOI Ta BU3HAHOI METOAMKU PO3pPaxyHKY XapakTepUCTUK SIKOCTI
obcnyroByBaHHA Takoro Tpadiika. 3i 3pOCTaHHAM CTyneHs camonogiObHOCTI MmakeTHoro Tpadika
XapaKTePUCTUKN SIKOCTi 0OCHyroByBaHHSl Y CUCTEMi CYTTEBO MOripLUYIOTLCS MOPIBHAHO 3 0OCHyroByBaHHSM
Tpachika aHanoriyHoi iHTEHCMBHOCTI, ane 6e3 edekTy camonogibHocTi. Po3paxyHOK XapakTepucTuk sIKOCTI
0obcnyroByBaHHSA B OJHOKaHarbHIi CUCTEMI MaKETHOI Mepexi 3B’A3Ky 4YacTO 3BOAUTLCA [0 3HAXOAXKEHHS
nokasHmka Xepcrta camonogioHocTi Tpadika, nicns 4oro 3a Bigomol dopmyno Hoppoca po3paxoByeTbes
cepenHs KinbkicTb nakeTiB y cuctemi. MNpoTe Takuin MeTo4 He O03BOMSE 3a BCTAHOBMNEHWM 3HAYEHHAM
nokasHmka XepcTa po3paxyBaTu LUE W Taki BaXNMBi XapaKTEPUCTUKN SAKOCTI 06CNyroByBaHHS, K CEpeHin
Yyac 3aTpUMKM NaKeTiB y HakonuuyBanbHOMY Oydepi Ta MMOBIPHICTb O4YiKyBaHHsi 0GCnyroByBaHHsa naketa. Y
BMMNaAKy camMonofibHoi MOAENi MOTOKY NaKeTIB 3 pO3MNoginioM iHTepBany Yyacy MiXk MOMEHTaMW HagXOOKEHHS
nakeTiB 3a 3akoHamu [lapeto abo Bewbynna po3paxyHOK iMOBIPHOCTI O4ikyBaHHS 0OGCNyroByBaHHS
MOXIMBUIA, SKWO BiAOMWUIA  PO3MOAIN CTaHiB cucTteMuM abo KinMbKiCTb NakeTiB y CUCTEMI B MOMEHTU
HaaXOKEHHS HOBMX NakeTiB. Y poboTi 3anponoHOBaHO MeETOZ anpokcumauii dyHKUii po3noginy craHiB
CUCTEMU B MOMEHTU HaOXOKEHHA HOBMX MakeTiB i HA MOro OCHOBI OTpUMaHO hopMyny po3paxyHKy
MMOBIPHOCTI O4ikyBaHHS 06CnyroByBaHHs Nnaketa B OAHOKaHanbHI cucTeMi i3 camonofibHum Tpadikom. Mpu
LbOMY PO3XOPKEHHS pe3yrbTaTiB MOAENMOBAHHS i po3paxyHKy He nepeBullye 5% npu 3MiHi 3aBaHTaXXeHHS
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cuctemn B gianasoHi 0,3<p<1 (npu p=0,6 noxmbka meHwe 2%) i npy 3MiHi 3Ha4YeHb MOKa3HUKa
camonogibHocTi XepcTa B gianas3oHi 0,5 < H< 0,9.

KnroyoBi cnoBa: NMoBIpHICTb o4ikyBaHHSA 06CnyroByBaHHS, caMonoAibHMI Tpadik, XapakTepUCTUKA
SIKOCTi 0OCNyroByBaHHs, OAHOKaHaNbHa cuctema o0CryroByBaHHS 3 YEpProto.

AHHOTauuA. PacyeT xapaKTepuCcTuK kayecTBa OOCMyXMBaHUSA B OQHOKaHaNbHOW CUCTEME MAKETHOM
CETU CBA3M 4acTO CBOOMTCH K HAaXOoXOEeHUIo nokasaTensi Xepcra camonogobHoCTM Tpadmka, nocre Yero no
n3BecTHon hopmyrne Hoppoca paccumTbiBaeTCsl CpedHee KONMMYecTBO MakeToB B cucTeme. OgHako Takom
METOA He NO3BOJSET MO YCTAHOBIEHHOMY 3HAYEHUIO MokasaTens Xepcra paccyvMTaTb elle OYeHb BaXKHble
XapaKTepPUCTUKN KavyecTBa OOCMNY>XNBaHWS, TaKUe, KaK CpefHee BPeEMS 3aEPXKKN NaKETOB B HAKOMUTENbHOM
Oydepe N BEPOSATHOCTb OXxuAaHus obNyxuMBaHUsA naketa. B paboTe npennoxeH metof anmnpokcumaumm
PYHKUMM pacnpenenennsi COCTOSHUI CUCTEMbI B MOMEHTLI MOCTYMNIEHUS HOBbLIX MaKeToOB M Ha €ro OCHOBE
nony4eHa copmyrna pacyetra BEPOSATHOCTU OXMAAHUA 0OCNyXMBaHMA NakeTa B O4HOKaHanbHOW CUCTEME C
caMonogobHbIM TpagonKoM.

KniouyeBble cnoBa: BepoATHOCTb OXWMAaHUs  OOCMyXMBaHWS, CaMOMOLOOHbIN  TpaduK,
XapaKTepUCTUKK KadecTBa 0bCNy>XMBaHNSA, OQHOKaHanbHasi cucteMa obCny>XKMBaHUA C 04epebHo.

In packet networks, packet flows (traffic) significantly differ from the Poisson flow model
with the exponential distribution function of the time interval between the moments of packet
arrival. Here, the flow of packets is formed by a plurality of sources of requests for the provision of
a network of services and network applications that provide video, data, speech and other services.
The sources of requests involved in the process of creating a packet stream differ significantly in
values of the specific intensity of the load. The intensity of the load of the resulting packet stream at
any given time depends on which applications are served by query sources and what is the ratio of
their number to different applications. The structure of traffic is also influenced by the technological
features of the used-service algorithms. For example, if the service is provided by multiple
applications or in the used protocols have the repeated transfer of incorrectly accepted packets, then
the moments of packet requests are much correlated. Because of this, in the process of service, the
output streams vary considerably and in the resultant traffic there are long-term dependencies in the
intensity of the arrival of packets. In this case, traffic is no longer a mere sum of the number of
independent stationary and ordinary streams, such as Poisson flows of telephone networks. In
multiservice packet switched networks, traffic is heterogeneous, and streams of different
applications require a certain level of service quality. In these conditions, the flows of all
applications are provided by a single multiservice network with shared protocols and management
laws. The is despite the fact that the sources of each application have different rates of transmission
of information or change it during the communication session (maximum and average speed). As a
result, the combined packet stream is characterized by the so-called "burstiness" of traffic with
random frequency and duration of peaks and recessions. Such packet traffic is characterized by
strong unevenness of the intensity of the arrival of packets. Packets are not smoothly dispersed on
different intervals of time but grouped in "packets" on the same intervals, and are completely absent
or very small at other intervals of time [1].

For packet networks, a mathematical model of self-similar traffic is used, but there is no
reliable and recognized methodology for calculating the parameters and characteristics of the
quality in mass-servicing systems in the context of servicing such traffic. With the growth of the
degree of self-similarity of packet traffic, the quality characteristics in the system significantly
deteriorate compared with the maintenance of traffic of similar intensity, but without the effect of
self-similarity.

The calculation of service quality characteristics (QoS) in a one-channel system with an
infinite queue for self-similar traffic (model fBM/D/1/w0) often reduces to the estimate of the Hurst
exponent H of self-similar traffic, after which according to the known Norros formula, the
calculation of average number of packets in the system N [2 ] Other characteristics such as the
average number of packets Q in the queue, the average packet time in the system 7, and the average
delay time of packets in the system of W are then calculated based on their known functional
relationships from the calculated mean N [3]. However, such an algorithm from the Hurst exponent
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H does not allow to be calculated such characteristics as the service waiting probability for packet
and the average packet delay time of ¢, in the buffer memory.

The purpose of this work is to establish an approximating function for the distribution of
states in a one-channel system with an infinite queue and self-similar traffic at the moment of
packets receipt, and on this basis made receiving the formulas for calculating the service waiting
probability for packet and the average delay time of packets in the cumulative buffer.

In the mathematical models of the Queuing System (QS), the type of input stream, the
scheme of QS and service rule are considered. In this case, an input stream with self-similar
properties is considered, in which, for example, Pareto or Weibull distributions [1] are used to
describe the distribution of the time interval between the moments of packets arrival. The service
rule of packets in the flow is without losses but with the possibility of waiting in the infinite queue,
and the rule of servicing packets from the queue — according to the rule of FIFO (first input — first
output). The QS scheme is single-channel.

The evaluation of the service quality characteristics in the QS is always performed on the
basis of a mathematical description of the system response to the input packet stream. Under the
reaction of the system, it is understood that the states, due to the random nature of the packets flow,
are mathematically described by the probabilistic distribution function of the number of occupied
channels and waiting places P;, where i is the number of packets in the system (in channels and in
the queue). This function coincides with the distribution function of the number of packages in the
system (serviced and waiting in the queue), since each packet occupies one channel in system or
one place in a queue at the waiting.

In the case of the simplest Poisson model of flow in a QS with a loss or waiting (queue), the
states of the system are described by one of the known Erlang distributions (i.e., the first or second
distribution of Erlang, respectively) [3]. Finding the system state distribution function for more
complex stream models is a very difficult task, and therefore, for the aforementioned flow model,
there are not similar solutions.

The utilization factor of p is defined as the ratio of the intensity of the input flow of
requirements A to the service intensity pu. For a single-channel system in any packet stream
(arbitrary distribution G of the time interval between the arrival times of packets) p = 1 - po, where
po is the probability of a system's freedom or the state of the system po (system have 0 packets).
Thus, p coincides with the probability of the employment of the system or P. = p.

For the Poisson flow of packets, the service waiting probability of P, coincides with the
probability of employment P, 3, p. 49] of the system and therefore for a single-channel model. For
example, with M/G/1/o0 (for any law of service distribution) we get P,, = P. = p.

Taking into account packets in a queue in stationary mode there is a stationary distribution
of system states or number of packets in the system pi, where k is the number of packets (state po -
in the system 0 packets, state pi - busy single channel, state p» — occupied channel and one place in
a queue, etc). Distribution pi does not depend on the moments of the packets arrival into the system
(does not depend on whether the packet arrives or does not arrive in the system). For the Poisson
flow of packets this distribution is sufficient to calculate the service waiting probability P,, since

P,=> p,=1-p,. (1)
k=1

For arbitrary packet flows, for example, the G/G/1/c system, P, # P. and this formula can
only be used if the known distribution rx of the number of packets in the system at the moment of
receipt of new packets, where k is the number of packets. The pi distribution differs from the 7
distribution by the fact that po = 1 - P. (or po = 1 - p), while o = 1- P,.. From this it follows that the
packet should expect service with the probability P, = 1 - 1. For the M/G/1/o0 system, the equation
pr = 1k 1s executed and therefore the py distribution [3] is used instead of 7y distribution.

Consequently, in the case of a self-similar packet flow model with time interval distribution
between the moments of packet arrival according to Pareto or Weibull's laws, the waiting
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probability calculation for service is possible if the known of system states distribution or the
distribution 74 of packets number in the system at the moment of receipt of new packages.

In Fig. 1 for a one-channel system with an infinite queue by a dashed line shows the distri-
bution function of the number of packets in the system px, which does not depend on the moments of
the arrival of packets into the system, and a continuous broken line shows the distribution function
rr of the number of packets in the system at the moment of receipt of new packets. These functions
were obtained using a computer simulation program of self-similar traffic [4].

It should be noted that in the self-similar traffic of packet communication networks there are
large breaks (pauses) in the arrival of packets into the system [3], and therefore the probability po
(for this example po = 0,495) is the largest in the distribution function of the system states.
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Figure 1 — Distribution functions of the system states and its approximation

From Fig. 1, we see that the bulk of the distribution function of the number of packets in the
system at the moment of new packets receipt 7« without probabilities ro, 71 and > is sufficiently
qualitatively consistent with the approximating function B; (shown by the points), as proposed by

the following expression:
P p .
B =—exp| ——1i |, 2
" N p( N J @

where p — is load of the system or utilization factor (0,3 < p < 1); N — the average number of packets
in the system.

In formula (2), the approximating function B; is an exponential function with a distribution
parameter p / N.

In the non-Poisson flow with a Generalized distribution G of the time interval between the
moments of arrival of packets (for example, the self-similar flow of type fBM), the service waiting
probability in a single-channel system is calculated by formula (1), but necessarily with the use of
the distribution function r; of the number of packets in the system at the moment of new packets
receipt:

o0
P,=>rn=1-1. 3)

k=1
But, as can be seen from Fig. 1, if the probability Bo from the approximating functions (2) is
directly calculated instead of the true ro, then a big error will be obtained. Therefore, the error of
calculating the service waiting probability by the formula P,, = 1 - By will be the same large error.
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Consequently, according to expressions (3) and (2), the service waiting probability in a one-channel
system with an infinite queue of type fBM/D/1/00 will be defined as follows:
Pw=z;’k’f323k=zﬂexp(—£kj. )
k=1 k=1 k=1 N N

Thus, if it is possible to set the average number of packets in the system N or after
determining the Hurst exponent using the Norros formula [2] to calculate the upper limit of the
possible average N. Using the approximation (2) and formula (4), one can calculate the waiting
probability P, of the packet. Since in the approximating distribution (2) parameter (p/N)=(1/T)
[3], where T is the mean staying time of the packets in the system, then for practical calculations in
the distribution (2) we can specify not N but 7.

In conclusion, it should be noted that imitation modeling [4] confirmed the correctness of
this calculation method of service quality characteristics in the system fBM/D/1/00 with self-similar
traffic. At the same time, the difference between the simulation and calculation results does not
exceed 5% when the system loads in the range 0,3 < p <1 (with p > 0,6 error less than 2%) and the
change in the Hurst exponent values in the range 0,5 <H < 0,9 [5].

At that, as can be seen from Fig. 1, the result of calculating the service waiting probability
P, will always be somewhat overestimated, since the approximating function (2) also gives
somewhat inflated results relative to the real probabilities 71 and 72, which are included in the sum
of the calculation formula Bi (4). For example, Fig. 1 shows that the probability o = 0,153 and
therefore the real service waiting probability P,, = 0,847. The calculation of this probability by the
formula (4) gives the value P,, = 0,885, which is only 4,7 % higher than the real value of the service
waiting probability. This is the case when p = 0,5, with p > 0,6 the error less than 2%.
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