УДК 621.371; 621.372;538.1

Иваницкий А.М. Ivanitckiy A.M.

ЭКСПЕРИМЕНТАЛЬНОЕ ДОКАЗАТЕЛЬСТВО СУЩЕСТВОВАНИЯ НАПРАВЛЕННОГО ПОТОКА МАГНИТНЫХ МОНОПОЛЕЙ

EXPERIMENTAL PROOF OF THE EXISTENCE OF THE DIRECTED MAGNETIC MONOPOLES FLUX

Аннотация. Дана экспериментальное доказательство существования направленного потока магнитных монополей.

Summary. Experimental proof of the existence of the directed magnetic monopoles flux is brought.

В 1931 году сформулирована проблема существования магнитных монополей [1]. С тех пор теоретические исследования проводились в направлении выяснения свойств магнитных монополей относительно существования их в природе (см., например, [2 ... 7]). В 2000 году при разработке сигнального способа компенсации поглощения радиосигнала в тракте распространения радиоволн в линии радиосвязи найден (теоретически) направленный поток магнитных монополей [8 ... 10]. Показано, что этот поток магнитных монополей существует в экспофункциональном поле. Одновременно с теоретическими исследованиями проводились и экспериментальные исследования, которые сводились к постановке опытов по обнаружению магнитных монополей в природе (см., например, [2, 3, 11 ... 14]): в продуктах ядерных столкновений при высоких энергиях на ускорителях, в космическом излучении и вторичных продуктах этого излучения, рожденных в атмосфере. Однако магнитные монополи экспериментальным путем в природе не были обнаружены.

Поэтому цель данной статьи – привести экспериментальное доказательство существования направленного потока магнитных монополей, опираясь на результаты теоретических исследований, описанных в [9, 15, 16].

Для обоснования постановки опыта рассмотрим линейную однородную изотропную покоящуюся среду, в которой электромагнитное поле возбуждается сторонними токами, описываемыми вектором объемной плотности тока проводимости вида:

$$\bar{j}^{\rm cr} = e^{\pm\lambda t} \bar{j}^{\rm cr}, \qquad (1)$$

где $\lambda > 0$; t – время протекания процесса возбуждения; \tilde{j}^{cr} – ядро вектора \bar{j}^{cr} [15], проекции которого – произвольные функции. Из выражения (1) видно, что проекции вектора \bar{j}^{cr} являются экспофункциями [17]. В указанной среде возникает экспофункциональное поле [10], для которого первое и второе уравнения Максвелла в дифференциальной форме имеют вид [16]:

$$\operatorname{rot}_{+}(e^{\pm\lambda t}\widetilde{H}) = (\sigma \pm \lambda \varepsilon_{a})e^{\pm\lambda t}\widetilde{E} + \varepsilon_{a}e^{\pm\lambda t}\frac{\partial \overline{E}}{\partial t} + e^{\pm\lambda t}\widetilde{j}^{\operatorname{cr}}, \qquad (2)$$

$$\operatorname{rot}_{-}(e^{\pm\lambda t}\widetilde{\overline{E}}) = \pm\lambda\mu_{a}e^{\pm\lambda t}\widetilde{\overline{H}} + \mu_{a}e^{\pm\lambda t}\frac{\partial\overline{H}}{\partial t},$$
(3)

где $\varepsilon_a, \mu_a, \sigma$ – параметры среды; \tilde{E} и \tilde{H} – ядра векторов напряженности электрического \bar{E} и магнитного \bar{H} полей соответственно; rot₊... и rot₋...– операции ротора вектора, которые поясняются в [18, 19].

Используя материальные уравнения среды:

$$\overline{D} = \varepsilon_a \overline{E} = \varepsilon_a e^{\pm \lambda t} \widetilde{\overline{E}} = e^{\pm \lambda t} \overline{\widetilde{D}} , \qquad (4)$$

$$\overline{B} = \mu_a \overline{H} = \mu_a e^{\pm \lambda t} \widetilde{\overline{H}} = e^{\pm \lambda t} \widetilde{\overline{B}} , \qquad (5)$$

$$\overline{j} = \sigma \overline{E} = \sigma e^{\pm \lambda t} \widetilde{\overline{E}} = e^{\pm \lambda t} \widetilde{\overline{j}} , \qquad (6)$$

где $\widetilde{\overline{D}}$ – ядро вектора электрической индукции \overline{D} ; $\widetilde{\overline{B}}$ – ядро вектора магнитной индукции \overline{B} ; $\widetilde{\overline{j}}$ – ядро вектора объемной плотности тока проводимости \overline{j} , уравнения (2) и (3) можно переписать:

$$\operatorname{rot}_{+}(e^{\pm\lambda t}\widetilde{\overline{H}}) = e^{\pm\lambda t}\widetilde{\overline{j}} + \lambda e^{\pm\lambda t}\widetilde{\overline{D}} + e^{\pm\lambda t}\frac{\partial\overline{D}}{\partial t} + e^{\pm\lambda t}\widetilde{\overline{j}}^{\,\mathrm{cr}}, \qquad (7)$$

$$\operatorname{rot}_{-}(e^{\pm\lambda t}\widetilde{\widetilde{E}}) = \pm\lambda e^{\pm\lambda t}\widetilde{\widetilde{B}} + e^{\pm\lambda t}\frac{\partial\widetilde{\widetilde{B}}}{\partial t}.$$
(8)

Возьмем интегралы от левых и правых частей равенств (7) и (8) по произвольной поверхности *s*, опирающуюся на замкнутый контур *l*, и применим теорему Стокса и ее дуальную форму [18] к левым частям полученных равенств. В результате найдем первое и второе уравнения Максвелла в интегральной форме экспофункционального поля:

$$e^{\pm\lambda t} \oint_{l} \widetilde{\overline{H}} \cdot d\overline{l} = e^{\pm\lambda t} \int_{s} \widetilde{\overline{j}} \cdot d\overline{s} \pm \lambda e^{\pm\lambda t} \int_{s} \widetilde{\overline{D}} \cdot d\overline{s} + e^{\pm\lambda t} \frac{d}{dt} \int_{s} \widetilde{\overline{D}} \cdot d\overline{s} + e^{\pm\lambda t} \int_{s} \widetilde{\overline{j}}^{c\tau} \cdot d\overline{s} , \qquad (9)$$

$$e^{\pm\lambda t} \oint_{-l} \widetilde{\overline{E}} \cdot d\overline{l} = \pm \lambda e^{\pm\lambda t} \int_{s} \widetilde{\overline{B}} \cdot d\overline{s} + e^{\pm\lambda t} \frac{d}{dt} \int_{s} \widetilde{\overline{B}} \cdot d\overline{s}$$
(10)

или

$$e^{\pm\lambda t}\widetilde{J} = e^{\pm\lambda t}\widetilde{I} \pm \lambda e^{\pm\lambda t}\widetilde{Q} + e^{\pm\lambda t}\frac{d}{dt}\widetilde{Q} + e^{\pm\lambda t}\widetilde{I}^{\,\mathrm{cr}},\qquad(11)$$

$$e^{\pm\lambda t}\widetilde{\mathbf{\varepsilon}} = \pm\lambda e^{\pm\lambda t}\widetilde{\Phi} + e^{\pm\lambda t}\frac{d}{dt}\widetilde{\Phi}, \qquad (12)$$

где

$$\widetilde{\mathbf{\varepsilon}} = \oint_{-l} \widetilde{\overline{E}} \cdot d\overline{l} , \qquad (13)$$

$$\widetilde{J} = \oint_{-l} \widetilde{\overline{H}} \cdot d\overline{l} , \qquad (14)$$

$$\widetilde{\Phi} = \int_{s} \widetilde{\overline{B}} \cdot d\overline{s} , \qquad (15)$$

$$\widetilde{Q} = \int_{S} \widetilde{\overline{D}} \cdot d\overline{s} , \qquad (16)$$

$$\widetilde{I} = \int_{s} \widetilde{j} \cdot d\overline{s} , \qquad (17)$$

$$\widetilde{I}^{\,\mathrm{cr}} = \int_{s} \widetilde{\overline{j}}^{\,\mathrm{cr}} \cdot d\overline{s} \,. \tag{18}$$

Здесь $\tilde{\varepsilon}$ – ядро электродвижущей силы (эдс) самоиндукции, взятой с обратным знаком [18, 20]; \tilde{J} – ядро магнитодвижущей силы (м.д.с.) [20]; $\tilde{\Phi}$ – поток ядра вектора магнитной индукции сквозь поверхность s; \tilde{Q} – поток ядра вектора электрической индукции сквозь поверхность s; \tilde{I} – ядро тока проводимости через поверхность s; \tilde{I}^{cr} – ядро стороннего тока через поверхность s [21].

Используя правило дифференцирования произведения двух функций, перепишем равенства (11) и (12) в виде:

$$J = I + \frac{d}{dt}Q + I^{\rm cr}, \qquad (19)$$

$$\mathbf{\mathcal{E}} = \frac{d}{dt}\Phi, \qquad (20)$$

где

$$\begin{aligned} & \mathbf{\mathcal{E}} = e^{\pm\lambda t} \widetilde{\mathbf{\mathcal{E}}}, \quad J = e^{\pm\lambda t} \widetilde{J}, \quad \Phi = e^{\pm\lambda t} \widetilde{\Phi}, \\ & Q = e^{\pm\lambda t} \widetilde{Q}, \quad I = e^{\pm\lambda t} \widetilde{I}, \quad I^{\text{cr}} = e^{\pm\lambda t} \widetilde{I}^{\text{cr}}, \end{aligned}$$

$$(21)$$

Для катушки индуктивности без сердечника, имеющей *n* витков, на основании равенства (20) можно записать [20]:

$$\mathbf{\mathcal{E}}_{L} = \frac{d}{dt} \Psi_{L}, \qquad (22)$$

где

$$\Psi_L = n\Phi = Li - \tag{23}$$

потокосцепление самоиндукции. Здесь *L* – индуктивность контура, образованного витками катушки; *i* – ток, протекающий по этому же контуру. Равенство (23) с учетом (21) можно переписать:

$$ne^{\pm\lambda t}\widetilde{\Phi} = Li \tag{24}$$

или

$$i = e^{\pm \lambda t} \tilde{i} , \qquad (25)$$

где

$$\widetilde{i} = \frac{n}{L}\widetilde{\Phi}\,,\tag{26}$$

т.е. ток *i* имеет форму экспофункции с тем же экспоненциальным множителем, что и у потока Ф вектора магнитной индукции. Подставив (25) в (23), а полученное равенство в (22), найдем:

$$\mathbf{\mathcal{E}}_{L} = L \frac{d}{dt} (e^{\pm \lambda t} \widetilde{i}) = \pm \lambda L e^{\pm \lambda t} \widetilde{i} + L e^{\pm \lambda t} \frac{di}{dt} \,. \tag{27}$$

Из равенства (27) видно, что в данном случае имеет место явление выделения активной мощности реактивным элементом L [17, 22]. Об этом свидетельствует слагаемое $\pm \lambda L e^{\pm \lambda t} \tilde{i}$ равенства (27).

Указанное слагаемое соответствует слагаемому $\pm \lambda e^{\pm\lambda t} \widetilde{\Phi}$ равенства (12), слагаемому $\pm \lambda e^{\pm\lambda t} \int_{s} \widetilde{B} \cdot d\overline{s}$

равенства (10), слагаемому $\pm \lambda e^{\pm \lambda t} \widetilde{B}$ равенства (8) и, наконец, слагаемому $\pm \lambda \mu_a e^{\pm \lambda t} \widetilde{H}$ равенства (3). Последние из перечисленных слагаемых указывают на наличие направленного потока магнитных монополей в экспофункциональном поле. Следовательно, экспериментальное доказательство существования явления выделения активной мощности реактивным элементом L [23, 24] является одновременно доказательством существования в природе направленного потока магнитных монополей при условии создания экпофункционального поля.

Проведем рассуждения для конденсатора, аналогичные тем, которые проведены для катушки индуктивности. При условии I = 0 и $I^{cr} = 0$ для конденсатора равенство (19) имеет форму

$$J_c = \frac{d}{dt}Q_c, \qquad (28)$$

где [20]

$$Q_c = Cu - \tag{29}$$

заряд на поверхности металлической обкладки конденсатора. Здесь *С* – емкость, образования обкладками конденсатора; *и* – разность потенциалов (напряжение) между обкладками конденсатора. Равенство (29) с учетом (21) имеет вид:

$$e^{\pm\lambda t}\widetilde{Q}_c = Cu.$$
(30)

Отсюда

$$u = e^{\pm \lambda t} \widetilde{u} , \qquad (31)$$

где

$$\widetilde{u} = \frac{1}{C} \widetilde{\mathcal{Q}}_c \,, \tag{32}$$

т.е. напряжение *и* имеет форму экспофункции с тем же экспоненциальным множителем, что и у потока *Q* вектора электрической индукции. Подставив (31) в (29), а затем в (28), получим:

$$J_{c} = C \frac{d}{dt} (e^{\pm \lambda t} \widetilde{u}) = \pm \lambda C e^{\pm \lambda t} \widetilde{u} + C e^{\pm \lambda t} \frac{d\widetilde{u}}{dt}.$$
(33)

Из последнего равенства видно, что в данном случае имеет место явление выделения активной мощности реактивным элементом C [17, 22]. На это указывает слагаемое $\pm \lambda C e^{\pm \lambda t} \tilde{u}$ равенства (33).

Указанное слагаемое соответствует слагаемому $\pm \lambda e^{\pm\lambda t} \widetilde{Q}$ равенства (11), слагаемому $\pm \lambda e^{\pm\lambda t} \int \widetilde{\overline{D}} \cdot d\overline{s}$

равенства (9), слагаемому $\pm \lambda e^{\pm \lambda t} \widetilde{D}$ равенства (7) и слагаемому $\pm \lambda \varepsilon_a e^{\pm \lambda t} \widetilde{E}$ равенства (2). Последние слагаемые говорят о том, что существует дополнительный направленный поток электрических монополей в экспофункциональном поле. Таким образом, экспериментальное доказательство существования явления выделения активной мощности реактивным элементом *C* [23, 24] является одновременно доказательством существования в природе дополнительного направленного потока электрических монополей при условии создания экпофункционального поля.

Описанные выше процессы, протекающие в катушке индуктивности и конденсаторе, достаточно точно отображают действительную природу физических явлений при условии квазистационарности [21] экпофункционального поля. В этом случае конденсатор концентрирует в себе практически всю электрическую энергию, а катушка индуктивности – всю магнитную [21].

Все сказанное выше поясняет механизм появления явления выделения активной мощности реактивными элементами электрической цепи. Из равенств (23) и (29) видно, что экспофункциональные ток и напряжение вызывают в катушке индуктивности и соответственно в конденсаторе экспофункциональное поле и, наоборот. Таким образом, экспериментальное обнаружение явления выделения активной мощности реактивными элементами электрической цепи одновременно свидетельствует и о том, что в катушке индуктивности реально существует направленный поток магнитных монополей, а в конденсаторе – дополнительный направленный поток электрической цепи, содержащей реактивные элементы, последовательно с индуктивностью *L* отображаются сопротивлением с величиной сопротивления $\pm \lambda L$ (см. равенство (27)) и параллельно с емкостью *C* – проводимостью с величиной проводимости $\pm \lambda C$ (см. равенство (39)) [17]. Верхние знаки при сопротивлении и проводимости указывают на то, что в электромагнитном поле увеличиваются потери энергии или увеличивается поглощение в среде, а нижние знаки – что в электромагнитном поле создается активная среда [21].

Из всего сказанного следует, что экспериментальное исследование любой *RLC*-цепи при экспофункциональном воздействии несет в себе доказательство реальности существования в природе указанных выше потоков, в том числе и потока магнитных монополей. Простейшей для исследования цепью может служить последовательный *LC*-контур, подключенный к источнику напряжения, задающее напряжение которого – экспофункциональная функция включения:

$$u(t) = \begin{cases} U_m e^{-\lambda t} \sin(\omega t + \varphi), t \ge 0\\ 0, \qquad t < 0. \end{cases}$$
(34)

Как теоретические, так и экспериментальные исследования такой цепи описаны в [23, 24]. Схема экспериментального макета изображена на рис. 1. Ко входу этой схемы подключается генератор периодической последовательности коротких импульсов, который вместе с элементами, обведенными пунктирной линией, образует генератор периодических посылок экспосинусоидальных колебаний вида (34), где $\lambda = R/2L$, $\omega \approx 1/\sqrt{LC}$. К выходу схемы рис. 1 подключается осциллограф. Сопротивления R_1 и R_2 необходимы для регулировки величины напряжения на выходе генератора экспосинусоидальных колебаний.

Рисунок 1 – Схема экспериментального макета

Схема замещения для ядер токов и напряжений испытуемого последовательного *LC*-контура с параллельным включением сопротивления конденсатора [17] показана на рис. 2,а. При условии $\omega >> \lambda$ схему замещения последовательного *LC*-контура можно изобразить и с последовательным

включением сопротивления потерь конденсатора (рис. 2,б). В [23] найдено отношение напряжение u_c к напряжению u при условии $R - 2\lambda L = R_2 = 0$:

$$m = \frac{u_c}{u} = \frac{\widetilde{u}_c}{\widetilde{u}} \cong n\pi , \qquad (35)$$

где *n* – число периодов наблюдения синусоиды функции (34).

Рисунок 2 – Схема замещения последовательного *LC*-контура: а) с параллельным включением сопротивления потерь конденсатора; б) с последовательным включением сопротивления потерь конденсатора

Экспериментальное исследование контура с параметрами $L = 880 \cdot 10^{-3}$ Гн, $C = 25 \cdot 10^{-9} \, \Phi$, R = 370 Ом, что соответствует добротности контура Q = 16, показали, что при n = 20 $m \approx 60$. Рассчитанное значение m по формуле (35) равно 62,8, т.е. теория и практика хорошо согласуется, что доказывает реальность существования направленного потока магнитных монополей и дополнительного потока электрических монополей. Эти потоки образуют активные среды в катушке индуктивности и конденсаторе. Этот факт в схеме замещения (рис. 2,6) отображается сопротивление последовательного контура R = 370 Ом; в результате получаем контур без потерь с $R_3 = 0$ для сигнала вида (34).

В настоящее время существуют среды моделирования на ПЭВМ электрических процессов, протекающих в электрических цепях. Наиболее совершенная среда моделирования – Multisim 2001. В этой среде моделирования повторены описанные опыты^{*)}. Схема в среде Multisim 2001 показана на рис. 3. На рис. 4,а изображена форма сигнала на входе испытуемого *LC*-контура, а на рис. 4,б – на выходе цепи. Результаты испытаний сведены в таблицу. Как видно из этой таблицы существует хорошее совпадение теоретических и измеренных результатов, а также результатов, полученных при натурных испытаниях и моделировании. Это еще раз подтверждает реальность физических процессов, протекающих в экспофункциональном поле.

Рисунок 3 – Схема исследуемой цепи

^{*)} Моделирование проведено асп. Паску Д.Г.

Рисунок 4,а – Сигнал на входе

Рисунок 4,6 – Сигнал на выходе

Величина <i>п</i>	Измеренная величина т	Расчетное значение по формуле (35) величины <i>m</i>
10	28,6	31,4
20	58,4	62,8
30	91,3	94,2
40	124,2	125,6

В заключение можно сделать следующий вывод. В связи с тем, что явление выделения активной мощности реактивными элементами электрической цепи непосредственно сопровождается возникновением экспофункционального поля в устройствах, реализующих реактивные элементы, то надежным способом экспериментального доказательства существования направленного потока магнитных монополей является постановка опытов по изучению свойств *RLC*-цепей при экспофункциональных воздействиях.

Литература

- Dirac P.A.M. Quantised singularities in the electromagnetic field // Proc. of the Royal Society. 1931. Vol. A 133. – 60 c.
- 2. *Девонс С.* Поиски магнитного монополя // Успехи физических наук. 1965. Т. 85, вып. 4. С. 755-760.
- 3. *Монополь Дирака:* Сб. статей / Под ред. Б.М. Болотовского и Ю.Д. Усачева. М.: Мир, 1970. 332 с.
- 4. Швингер Ю. Магнитная модель материи // Успехи физических наук. 1971. Т.103, вып. 2. С. 355-365.
- 5. Абадоглу Е., Бруски М., Калоджеро Ф. Азбука динамики магнитных монополей // Теор. и мат. физ. – 2001. – Т. 128. – №1. – С. 4-14.
- 6. *Magnetic* monopoles, alive / M.N. Chernodub, F.V. Gubarev, M.I. Polikarpov, V.I. Zakharov // Ядерная физика 2001. Т. 64. №3. С. 615-627.
- 7. *Tang Ju-Fei*. Единая модель электрического и магнитного монополей // High Energy Phys. And Nucl. Phys. 2000. Vol. 24, №8. Р.702-710.
- 8. *Іваницький А.М.* Сигнальний спосіб компенсації поглинання радіосигналу в тракті поширення радіохвиль лінії радіозв'язку / Патент України на винахід № 39566 А від 15.06.2001. Бюл. № 5; заявл. 13.10.2000.
- 9. Иваницкий А.М. Экспофункциональные поля // Наукові праці УДАЗ ім. О.С. Попова. 2001. № 1. С. 18-21.

- Иваницкий А.М. Электромагнитные поля при экспофункциональном возбуждении / Сб. докладов (Часть 1) 5-й Международной науч.-техн. конф. «Достижения в телекоммуникациях за 10 лет независимости Украины», 21-22 августа 2001 г. – Одесса: ОНАС им. А.С. Попова. – 2001. – С. 38-39.
- 11. Berezinsky V. Ultra high energy cosmic rays from cosmological relics // Nucl. Phys. B. Proc. Suppl. 1999. Vol. 75, №2 P. 119-127.
- 12. Gambery L., Kalbfleisch G.R., Milton K.A. Direct and indirect searches for low-mass magnetic monopoles // Found. Phys. 2000. Vol. 30, №4. P. 543-565.
- 13. Ambrosio M. et al. Collab: MACRO. Final results of magnetic monopole seaches with the MACRO experiment // Eur Phys. J.C. 2002. Vol. 25. № 4. P. 511-522.
- 14. Wick S.D., Kephart T.W., Weiler T.J., Biermann P.L. Signatures for a cosmic flux of magnetic monopoles // Astropart. Phys. 2003. Vol. 18, № 6. P. 663-687.
- 15. *Иваницкий А.М.* Исследование потока магнитных монополей экспофункционального поля // Наукові праці ОНАЗ ім. О.С. Попова. 2003. №2. С. 9-14.
- 16. *Иваницкий А.М.* Электрический заряд и магнитный поток экспофункционального поля // Наукові праці ОНАЗ ім. О.С. Попова. 2004. №1. С. 3-8.
- 17. *Йваницкий А.М.* Реактивные элементы при экспофункциональных воздействиях // «Информатика и связь»: Сб. научн. тр. Украинской государственной академии связи им. А.С. Попова. 1996. С. 236-240.
- 18. *Иваницкий А.М.* Принцип дуальности в электродинамике // Наукові праці УДАЗ ім. О.С. Попова. 2000. №3. С. 29-35.
- 19. *Иваницкий А.М.* Матрицы в векторном анализе // Наукові праці ОНАЗ ім. О.С. Попова. 2002. №1. С. 19-25.
- 20. *Нейман Л.Р., Демирчян К.С.* Теоретические основы электротехники: В 2-х т. Учебник для вузов. Т. 1. 3-е изд., перер. и доп. Ленинград: Энергоиздат, 1981. 536 с.
- 21. Никольский В.В., Никольская Т.И. Электродинамика и распространение радиоволн. 3-е изд., перераб. и доп. М.: Наука, 1989. 544 с.
- 22. Іваницький А.М. Явище виділення активної потужності реактивними елементами електричного кола / Диплом на відкриття НВ № 3, зареєстровано 12.01.99; пріоритет від 31.11.94.
- 23. *Іваницький А.М.* Спосіб компенсації втрат резонансного контура / Патент України на винахід № 24456А від 21.07.98; заявка № 94076326 від 21.07.94.
- 24. Іваницький А.М. Явище виділення активної потужності реактивними елементами електричного кола / Винахідник України. 1999, № 2. 2000, №1. С. 121-126.