УДК 621.362.2

АНАЛИЗ ЭЛЕКТРИЧЕСКИХ ПРОЦЕССОВ В МНОГОФАЗНЫХ ИМПУЛЬСНЫХ ПРЕОБРАЗОВАТЕЛЯХ ПОСТОЯННОГО НАПРЯЖЕНИЯ ПРИ БЕЗРАЗРЫВНЫХ ТОКАХ ДРОССЕЛЕЙ СИЛОВЫХ КАНАЛОВ

КАДАЦКИЙ А.Ф., МАЛЯВИН И.П., СЛИНЧЕНКО А.А.

Одесская национальная академия связи им. А.С. Попова

ANALYSIS OF ELECTRICAL PROCESSES IN MULTIPHASE PULSE CONVERTERS OF CONSTANT VOLTAGE WITH CONTINUOUS CURRENTS OF CHOKES OF POWER CHANNELS

KADATSKYY A.F., MALYAVIN I.P., SLINCHENKO A.A.

Odessa national academy of telecommunications n.a. O.S.Popov

Аннотация. Выполнен анализ электрических процессов многофазных импульсных преобразователей при безразрывном режиме работы силовых каналов. Разработана математическая модель, обобщенная относительно типа силовых каналов.

Annotation. The analysis of electric processes of multiphase pulse converters is executed at a continuous operating mode of power channels. The mathematical model generalized concerning type of the power channel is developed.

введение

Телекоммуникационные системы должны удовлетворять требованиям надежности и обеспечивать устойчивую качественную связь [1]. С этой целью предусматривается внедрение современных средств электропитания телекоммуникационного оборудования. Использование импульсных преобразователей постоянного напряжения (ППН) модульной структуры, выполненных из параллельно включенных *N* однотипных силовых каналов (СК), направлено на повышение коэффициента полезного действия, нагрузочной способности силовых коммутирующих элементов (и ППН в целом), надежности и технологичности [2].

Переход к многофазной структуре модульных ППН – к многофазным импульсным преобразователям (МИП) – способствует уменьшению объема и массы реактивных элементов входных и выходных сглаживающих фильтров ППН средств электропитания телекоммуникационных систем. Многофазный принцип преобразования и регулирования электрической энергии в МИП реализуется за счет обеспечения временного сдвига между электрическими процессами в *k*-ых СК и общих электрических цепей, в которых осуществляется суммирование смещенных во времени электрических процессов [2].

Анализ электрических процессов МИП, каждый из N СК которого выполнен по схеме с последовательным транзистором и последовательным однообмоточным дросселем, функционирующий в безразрывном режиме, представлен в [2]. Результаты, представленные в [2], позволяют определять параметры силовых фильтров или оценить переменные составляющие в силовых цепях понижающего МИП.

Однако отсутствие результатов исследования электрических процессов основных структур построения МИП, силовые каналы которых работают в безразрывном режиме с автотрансформаторным включением дросселя, сдерживает использование таких ППН.

Цель работы – анализ электрических процессов МИП с СК понижающего, повышающего и инвертирующего типов с автотрансформаторным включением дросселей и получение соответствующей математической модели при безразрывном режиме работы СК.

ПОСТАНОВКА ЗАДАЧИ

Исполнение обмотки дросселя в виде двух частей и включение их по автотрансформаторной схеме позволяет или уменьшить (рис. 1, *a*, *b*, *d*) или увеличить (рис. 1, *б*, *c*, *e*) напряжение на силовом коммутирующем транзисторе по сравнению с простейшими типами силовых каналов с однообмоточным дросселем [3].

Рассмотрим, принимая допущения, принятые в [3], электрические процессы в импульсных ППН модульной структуры с автотрансформаторным включением дросселей при безразрывном режиме работы для трёх основных типов (y) схем силовой части – СК ППН (понижающий – y=1, повышающий – y=2 и полярно-инвертирующий – y=3). При безразрывном режиме функционирования для СК рассматриваемых типов характер изменения тока $i_{Lk}(t)$ и напряжения $u_{Lk}(t)$ дросселя выходного сглаживающего фильтра *k*-го СК одинаков [3]:

$$i_{Lk}(t) = \begin{cases} i_{LHk}(t) = I_{min\,1k} + I_{m1k} \frac{t_k}{t_{Hk}}, & \text{при} \quad 0 \le t \le t_{Hk}; \\ i_{LBk}(t) = I_{min\,2k} + I_{m2k} \left(1 + \frac{t_{Hk} - t_k}{t_{Bk}} \right) & \text{при} \quad t_{Hk} \le t \le t_{Hk} + t_{Bk}; \end{cases}$$
(1)

$$u_{Lk}(t) = \begin{cases} U_{LHk} = U_{BXk} - F_{Hy}U_{H} & \Pi P M \\ U_{LBk} = U_{H} - F_{By}U_{BXk} & \Pi P M \end{cases} \quad 0 \le t \le t_{Hk};$$

$$(2)$$

$$t_{k} = \begin{cases} t - t_{ck} + T & \text{при } t - t_{ck} \leq 0; \\ t - t_{ck} & \text{при } 0 \leq t - t_{ck} \leq T; \\ t - t_{ck} - T & \text{при } t - t_{ck} \geq T, \end{cases}$$
(3)

$$t_{ck} = \begin{cases} T(k-1) / N + \Delta_{t_{ck}} & \text{для МИП}; \\ 0 + \Delta_{t_{ck}} & \text{для ОИП,} \end{cases}$$
(4)

$$F_{_{\rm Hy}} = \begin{cases} 1 & \text{при} & y = 1; \\ 0 & \text{при} & y = 2, 3; \end{cases} \qquad F_{_{\rm By}} = \begin{cases} 1 & \text{при} & y = 2; \\ 0 & \text{при} & y = 1, 3, \end{cases}$$
(5)

$$I_{m1k} = \begin{cases} \Psi_{nxk} - U_{n} \stackrel{\cdot}{}_{Hk} / L_{1k} & \text{для } y = 1; \\ U_{nxk} t_{nk} / L_{1k} & \text{для } y = 2, 3, \end{cases}$$
(6)

$$I_{min1k} = \begin{cases} U_{H} n_{21k} / R_{Hk} \P_{Bk} + K_{Hk} n_{21k} \ge 0.5 I_{m1k} & \text{для } y = 1; \\ U_{H} n_{21k} / R_{Hk} K_{Bk} - 0.5 I_{m1k} & \text{для } y = 2, 3. \end{cases}$$
(7)

Рисунок 1 – Силовые каналы с автотрансформаторным включением дросселя при n21 < 1(а, в, д) и n21 > 1 (б, г, е): понижающие у = 1 (а, б), повышающие у = 2 (в, г), полярно-инвертирующие у = 3 (д, е), СУ – схема управления

В (1) – (7): I_{min1k} , I_{min2k} и I_{m1k} , I_{m2k} – соответственно минимальные токи и размахи пульсаций токов соответственно в индуктивности L_{1k} обмотки с числом витков W_{1k} и в индуктивности L_{2k} обмотки с числом витков W_{2k} силового дросселя k-го СК; $i_{Lhk}(t)$ и U_{Lhk} , $i_{Lbk}(t)$ и U_{Lbk} – токи и напряжения обмоток дросселя выходного сглаживающего фильтра k-го СК на интервалах времени соответственно накопления t_{hk} и возврата t_{bk} ; U_{Bxk} – напряжение, прикладываемое на вход силового сглаживающего фильтра k-го СК (для СК рассматриваемых типов U_{Bxk} = $U_{\Pi k}$); F_{Hy} , F_{By} – коэффициенты топологии схем СК, позволяющие учесть специфику конфигурации рассматриваемых типов y СК на интервалах времени соответственно накопления и возврата; t_{ck} – временной сдвиг электрических процессов k-го СК относительно начала координат; t_k – текущее время k-го СК; T – период преобразования электрической энергии; $\kappa_{hk} = t_{hk} / T$, $\kappa_{Bk} = t_{Bk} / T$ – коэффициенты накопления и возврата соответственно k-го СК.

Индуктивность дросселя L_{2k} , индуктивность L_{1k} , минимальные токи I_{min1k} , I_{min2k} и размахи пульсаций токов I_{m1k} , I_{m2k} связаны через коэффициент автотрансформации n_{21k} как

$$L_{2k} = L_{1k} n_{21k}^{2}; \qquad n_{21k} = W_{2k} / W_{1k}; I_{min1k} = n_{21k} I_{min2k}; \qquad I_{m1k} = n_{21k} I_{m2k}.$$
(8)

При параллельном соединении СК и по входу, и по выходу для любого силового канала (*k*=1, 2, … *N*) справедливо:

$$U_{LHk} = U_{LH}; \quad U_{LBk} = U_{LB}.$$
(9)

В общем случае параметры элементов СК (и ППН в целом) имеют технологический и иной разброс, вызванный температурными изменениями окружающей среды, старением

элементов и т. п. Указанный разброс можно учесть в виде приращений (отклонений) Δ от параметров, соответствующих идеальному случаю. Тогда параметры элементов и электрических процессов *k*-го СК можно представить в виде [3]

$$L_{1k} = L_1 + \Delta L_{1k}, \ I_{mk} = I_m + \Delta I_{mk}, \ t_{ck} = (k-1) \ T_{\Pi} + \Delta t_{ck}; \ \kappa_{Hk} = \kappa_{H} + \Delta \kappa_{Hk}; \ \kappa_{Bk} = \kappa_{B} + \Delta \kappa_{Bk} \dots$$
(10)

где L_1 – номинальное значение индуктивности первичной обмотки дросселя с числом витков W_{1k} сглаживающего фильтра *k*-го СК; $T_{\Pi} = T/N$. Идеальному случаю соответствует идентичность параметров элементов в отдельно взятых СК, равномерность временного сдвига между электрическими процессами СК и равномерность распределения тока нагрузки между СК. Это соответствует в (10) при равенстве нулю приращений: $\Delta L_{1k} = 0$, $\Delta_{f_{ck}} = 0$, $\Delta_{\kappa_{Hk}} = 0$, ...

При безразрывном режиме работы перечисленные схемы МИП имеют одинаковый характер изменения токов в силовых дросселях СК (рис. 2, a - c) и их равномерное смещение во времени обусловливает одинаковый характер изменения токов во входных цепях понижающего $i_{n1}(t)$ и инвертирующего $i_{n3}(t)$ МИП (рис. 2, d), в выходных цепях повышающего $i_{h2}(t)$ и инвертирующего $i_{h3}(t)$ МИП (рис. 2, e), на выходе понижающего $i_{h1}(t)$ и входе повышающего $i_{n2}(t)$ МИП (рис. 2, \mathcal{R}). Это позволяет описать электрические процессы в трех основных схемах МИП в обобщенном виде через параметры электрических процессов силовых дросселей. Входящие в обобщенные соотношения параметры для каждой схемы описываются различными выражениями [3]. При этом учитывается специфика конкретной схемы МИП.

При безразрывном режиме дросселей СК электрические процессы в цепях питания и нагрузки рассматриваемых типов МИП повторяются с периодом T_{n} , поэтому целесообразно ограничиться рассмотрением любого интервала времени длительностью T_{n} .

Примем за начало отсчета любого периода T_{Π} момент времени t_0 , соответствующий моменту времени перехода в замкнутое проводящее состояние $VT1_k$ управляемого коммутирующего элемента любого (очередного) *k*-го СК, у которого ток $i_{LBk}(t)$ достиг минимального значения I_{min1k} . Тогда момент времени t_1 , соответствующий моменту перехода в разомкнутое непроводящее состояние $VT1_k$ *k*-го СК, у которого ток $i_{LHk}(t_1)$ дросселя достиг максимального значения, равного $I_{max 1k} = I_{min 1k} + I_{m1k}$, будет в интервале $0 \le t_1 \le T_{\Pi}$.

Отрезок времени от начала периода T_{π} (точка t_0) до момента времени t_1 определяется как часть времени накопления:

$$\Delta_{t_1} = t_{\rm H} - T_{\rm II} \, \prod_{\rm H} / T_{\rm II} \xrightarrow{-} \tag{11}$$

где (как и в дальнейшем) прямые скобки обозначают целую часть числа.

С учетом $T_{\pi} = T/N$, интервалы времени Δt_1 (отрезок времени от 0 до t_1) и $\Delta t_2 = T_{\pi} - \Delta t_1$ (отрезок времени от момента t_1 до конца периода T_{π}) определяются как

$$\Delta_{t_1} = \P_{K_{H}} - p_1 + 1 \tilde{\mathcal{I}}_{\pi};$$
(12)

$$\Delta_{t_2} = (p_1 - N\kappa_{\rm H})T_{\rm II}; \tag{13}$$

$$p_1 = V_{\kappa_n} + 1 \tag{14}$$

где p_1 , $p_2 = p_1 - 1$ – количество дросселей, накапливающих электрическую энергию соответственно на интервалах времени Δt_1 и Δt_2 .

При обеспечении безразрывного режима работы силовых дросселей СК в МИП отсутствуют дроссели, энергия которых равна нулю. Тогда число дросселей b_1 и b_2 (здесь и далее используются обозначения, принятые в [2]), возвращающих накопленную энергию в нагрузку в моменты времени $t \rightarrow t_1$ и $t \rightarrow T_n$, соответственно определим как

$$b_1 = N - p_1; b_2 = N - p_2. \tag{15}$$

Рисунок 2 – Временные диаграммы токов в дросселях СК (a - c), в цепях питания (∂) понижающего $i_{n1}(t)$ и инвертирующего $i_{n3}(t)$ МИП, в цепях нагрузки (e) повышающего $i_{h2}(t)$ и инвертирующего $i_{h3}(t)$ МИП, в цепях нагрузки понижающего $i_{h1}(t)$ и питания повышающего $i_{n2}(t)$ МИП (\mathcal{H}) для N = 4

При различных коэффициентах $\kappa_{\rm H} = t_{\rm H}/T$ и $\kappa_{\rm B} = t_{\rm B}/T$

$$N_{K_{H}} \leq p_{1} \leq N_{K_{H}} + 1, \qquad p_{1} = 1, 2, ..., N;$$

$$N_{K_{B}} - 1 \leq b_{1} \leq N_{K_{B}}, \quad b_{1} = 0, 1, 2, ..., N - p_{1};$$
(16)

$$N_{\mathbf{K}_{\mathbf{H}}} - 1 \le p_2 \le N_{\mathbf{K}_{\mathbf{H}}}, \quad p_2 = 0, 1, 2, ..., N - 1;$$
(17)

$$N_{K_{B}} - 1 \le b_{2} \le N_{K_{B}}, \quad b_{2} = 0, 1, 2, ..., N - p_{2}.$$

Для безразрывных токов дросселей $i_{Lhk}(t \rightarrow t_1)$ к моменту времени $t \rightarrow t_1$ отключения – переключения в замкнутое непроводящее состояние $VT1_k$ очередного k-го CK в соответствии с (1) справедливо

$$i_{Luk}(t \to t_1) = I_{min1k} + I_{m1k},$$
 (18)

где при симметрии электрических процессов в МИП $I_{min1k} = I_{min1}$ – минимальное значение и $I_{m1k} = I_{m1}$ – максимальный размах пульсаций тока в индуктивности L_{1k} обмотки с числом витков W_{1k} дросселя *k*-го СК в момент времени $t \rightarrow t_1$ (рис. 2, *б*, *в*).

Если за начало отсчета принять k = 1, то в СК при $1 \le k \le p_1$ происходит накопление энергии в дросселях, а при $p_1 + 1 \le k \le N$ – дроссели возвращают накопленную энергию в нагрузку МИП. Тогда текущие значения b_1 в соответствие с (16) через номер k СК запишутся

$$b_1 = N + 1 - k. \tag{19}$$

Ток в дросселе *k*-го СК к моменту времени $t \rightarrow t_1$ с учетом (16) определяется в виде

$$i_{Lk}(t \to t_1) = \begin{cases} i_{Lk}(t \to t_1) = I_{min1k} + I_{m1k} - \P - 1 \not N \kappa_{H} - \frac{1}{2} N \kappa_{H} - \frac{1}$$

В момент t_1 (в конце интервала времени Δt_1) $VT1_{k-1}$ (k-1)-го СК МИП переключается – переходит в разомкнутое непроводящее состояние, и к моменту $t \rightarrow T_n$, в зависимости от $\kappa_{\rm H}$ и $\kappa_{\rm B}$ будет p_2 дросселей накапливать энергию, b_2 дросселей возвращать накопленную энергию.

Также, как и в предыдущем случае, полагаем, что при $1 \le k \le p_2$ в дросселях *k*-х СК накапливается электрическая энергия, а при $p_2 + 1 \le k \le N$ дроссели *k*-х СК возвращают накопленную электрическую энергию в цепь нагрузки. При этом силовому каналу, отключение $VT1_k$ в котором произошло в момент $t = t_1$ присваивается номер k = N, а силовому каналу, у которого энергия имеет максимальное значение, присваивается номер k = 1. При этом текущие значения b_2 в (17) в зависимости от номера *k* силового канала, примут следующий вид:

$$b_2 = N + 1 - k. \tag{21}$$

Для момента времени $t \to T_{\pi}$ получаем следующие выражения для тока дросселя *k*-го СК понижающего, повышающего и инвертирующего МИП:

$$i_{Lk}(t \to T_{\pi}) = \begin{cases} i_{Lnk}(t \to T_{\pi}) = I_{min1k} + I_{m1k} \oint_{2} + 1 - k \not\supseteq N\kappa_{\pi}, & 1 \le k \le p_{2}; \\ i_{Lnk}(t \to T_{\pi}) = I_{min2k} + I_{m2k} \oint_{2} - 1 + N\kappa_{\pi} + N\kappa_{\pi} - N \not\supseteq N\kappa_{\pi}, & p_{2} + 1 \le k \le N. \end{cases}$$
(22)

В общем случае силовые каналы понижающего и инвертирующего импульсного преобразователя модульной структуры – как однофазного (ОИП), так и МИП – потребляет энергию от первичного источника питания в течение времени $t_{\rm H}$ открытого состояния $VT1_k$. Однако, в отличие от ОИП, который потребляет энергию от источника первичного электропитания одновременно всеми N силовыми каналами, в МИП (при $\kappa_{\rm H} < 1$) к источнику первичного электропитания подключены только p_1 СК. В этом случае мгновенное значение максимального количества энергии потребляется в каждом периоде $T_{\rm n}$ к моменту $t \rightarrow t_1$ – перехода в разомкнутое непроводящие состояние $VT1_k$ очередного СК.

Для данного момента времени ($t \rightarrow t_1$) максимальные значения потребляемых от источника первичного электропитания токов $I_{п1 max}$ и $I_{n3 max}$ соответственно понижающим и инвертирующим МИП могут быть определены с учетом (20) следующим образом:

$$I_{n1 \ max} = I_{n3 \ max} = I_{n13 \ max};$$

$$I_{n13 \ max} = \sum_{1}^{p_1} {}_{LHk} (t \to t_1) = I_{m1} p_1 \blacksquare - \P_{p_1} - 1 \not\supseteq 2N \kappa_H \stackrel{-}{=} p_1 I_{min1}.$$
(23)

В момент времени $t = t_1$ рассматриваемого периода T_{π} отключается – переходит в разомкнутое не проводящее состояние $VT1_k$ очередного k-го СК, ток дросселя которого достиг значения I_{max1} . Тогда минимальные значения потребляемых от источника первичного электропитания токов $I_{\Pi 1 \ min}$ и $I_{\Pi 3 \ min}$ соответственно понижающим и инвертирующим МИП определяются в общем виде $I_{\Pi 13 \ min}$ следующим выражением

$$I_{\pi 1 \min} = I_{\pi 3 \min} = I_{\pi 13 \min} = I_{\pi 13 \max} - I_{\max 1},$$

$$I_{\pi 13 \min} = I_{\pi 1} p_{1} = - \Phi_{1} - 1 \not 2 N \kappa_{\mu} + p_{1} I_{\min 1} - I_{\max 1}.$$
(24)

Из соотношений (23), (24) следует, что размахи пульсаций переменных составляющих понижающего ΔI_{n1} и инвертирующего ΔI_{n3} МИП определяется значением I_{max1} :

$$\Delta I_{n1} = \Delta I_{n3} = \Delta I_{n13};$$

$$\Delta I_{n13} = I_{n13 max} - I_{n13 min} = I_{max1}.$$
(25)

Токи нагрузки повышающего $i_{H2}(t)$ и инвертирующего $i_{H3}(t)$ МИП являются суммой токов дросселей $i_{LBk}(t)$ СК, возвращающих накопленную за время t_{Hk} энергию (рис. 2,*e*). Мгновенное значение максимального количества энергии, поступающей в цепь нагрузки повышающего (y = 2) и инвертирующего (y = 3) МИП, будет соответствовать моменту времени $t = t_1$ после отключения – перехода в разомкнутое непроводящее состояние его управляемого ключа $VT1_k$, когда к нагрузке подключается дроссель очередного СК с максимальной накопленной энергией. Соответственно, минимальное (мгновенное) значение энергии поступающей в цепь нагрузки, будет соответствовать моменту времени $t \rightarrow t_1$, т. е. до начала указанной выше коммутации $VT1_k$.

Поэтому сумма

$$I_{\text{H23 min}} = \sum_{p_1+1}^{N} i_{LBk} (t \to t_1)$$
(26)

токов дросселей, возвращающих накопленную энергию в момент времени $t \rightarrow t_1$, определяет с учетом (20) в общем виде минимальное значение тока, поступающего в нагрузку повышающего I_{H2min} и инвертирующего I_{H3min} МИП:

$$I_{H2\ min} = I_{H3\ min} = I_{H23\ min}; \tag{27}$$

$$I_{H23 min} = \P - p_1 \tilde{I}_{min2} + I_{m2} b_1 I - \P_1 + 1 \tilde{I}_2 N \kappa_B \tilde{I}_{m2}$$
(28)

Поскольку после отключения – перехода в разомкнутое непроводящие состояние $VT1_k$ очередного k-го СК при $t = t_1$ к нагрузке МИП подключается дроссель с током $I_{max2} = I_{min2} + I_{m2}$ (рис. 2), то максимальный ток $I_{H23 max}$, поступающий в нагрузку повышающего $I_{H2 max}$ и инвертирующего $I_{H3 max}$ МИП определяется в общем виде как

$$I_{H2 max} = I_{H3 max} = I_{H23 max};$$

$$I_{H23 max} = I_{H23 min} + I_{max 2}.$$
(29)

Из (27), (29) следует, что мгновенное значение размаха $\Delta I_{\rm H23}$ пульсации тока переменной составляющей в цепи нагрузки повышающего $\Delta I_{\rm H2}$ и инвертирующего $\Delta I_{\rm H3}$ МИП определяется в виде

$$\Delta I_{H2} = \Delta I_{H3} = \Delta I_{H23};$$

$$\Delta I_{H23} = I_{H23 max} - I_{H23 min} = I_{max2}.$$
(30)

Ток нагрузки $i_{H1}(t)$ понижающего МИП и ток потребления $i_{n2}(t)$ повышающего МИП в любой момент времени определяется суммой токов $i_{Lk}(t)$ дросселей всех СК (рис. 2, a - c, \mathcal{R}):

$$i_{H1}(t) = i_{\Pi 2}(t) = \sum_{l=1}^{N} i_{Lk}(t) .$$
(31)

При коэффициентах трансформации $n_{21} \ge 1$ токи $I_{max1k} \ge I_{max2k} = I_{max1k}/n_{21}$, поэтому моменту времени $t \to t_1$ будут соответствовать максимальные значения токов $i_{H1}(t) = I_{H1 max}$ и $i_{\Pi 2}(t) = I_{\Pi 2 max}$ соответственно в цепях нагрузки понижающего и питания повышающего МИП.

При $n_{21} < 1$ токи $I_{max2k} > I_{max1k}$, поэтому максимальные значения токов $i_{H1}(t \rightarrow t_1) = I_{H1 max}$ и $i_{n2}(t \rightarrow t_1) = I_{n2 max}$ будут соответствовать не моменту $t \rightarrow t_1$ (в отличии от $n_{21} \ge 1$), а моменту времени $t = t_1$, когда в МИП происходит уменьшение (с p_1 по $p_1 - 1 = p_2$) на единицу числа дросселей, накапливающих электрическую энергию и увеличение (с b_1 на $b_1 + 1 = b_2$) на единицу числа дросселей, возвращающих электрическую энергию в рассматриваемом периоде T_{II} из-за перехода в разомкнутое непроводящие состояние $VT1_k$ очередного СК.

В момент времени $t = t_1$, с одной стороны происходит увеличение суммарного тока $\sum_{1}^{N} i_{Lk} (t \to t_1)$ (определяемого до момента $t \to t_1$) на величину I_{max2} , а с другой – уменьшение

этого суммарного тока на величину *I_{max1}*.

Таким образом, максимальные значения токов $I_{H1 max}$ и $I_{D2 max}$ являются функцией коэффициента трансформации n_{21} :

$$I_{H1 max} = I_{H2 max} = I_{H1 m2 max} = \begin{cases} I_{H1 m2 max1} & \text{при} & n_{21} \ge 1; \\ I_{H1 m2 max2} & \text{при} & n_{21} < 1, \end{cases}$$
(32)

где

$$I_{H^{1}\Pi^{2} max1} = \sum_{1}^{N} i_{Lk} (t \to t_{1}) = \sum_{1}^{p_{1}} i_{L^{Hk}} (t \to t_{1}) + \sum_{p_{1}+1}^{N} i_{L^{Bk}} (t \to t_{1}) ;$$

$$I_{H^{1}\Pi^{2} max2} = \sum_{1}^{N} i_{Lk} (t = t_{1}) = I_{H^{1}\Pi^{2} max1} - I_{max1} + I_{max2}.$$
(33)

С учетом соотношений (20), (23) и (29) для *I*_{н1п2 max1} получим

$$I_{H1\pi2} _{max 1} = I_{m1}p_{1} - \P_{1} - P_{1} - \frac{1}{2}N\kappa_{H} + p_{1}I_{min 1} + \P_{N} - p_{1}I_{min 2} + I_{m2}b_{1} - \P_{1} + \frac{1}{2}N\kappa_{B} - (34)$$

Из соотношений (32), (33) и (34) следует:

– при коэффициентах трансформации $n_{21} < 1$ максимальные значения суммарных токов $I_{H1 max}$ и $I_{\Pi 2 max}$ имеют место в момент времени $t = t_1$ в каждом периоде T_{Π} после перехода $VT1_k$ очередного СК в разомкнутое непроводящее состояние и определяются $I_{H1\Pi 2 max2}$ в соответствии с соотношением (33). По мере уменьшения коэффициента $n_{12} < 1$ происходит увеличение и амплитуд токов $I_{m2k} = I_{m2} = I_{m1}/n_{21}$, минимальных токов $I_{min2k} = I_{min2} = I_{min1}/n_{21}$ и максимальных значений $I_{H1 max}$, $I_{\Pi 2 max}$ соответственно тока нагрузки $i_{H1}(t_1)$ понижающего и тока потребления $i_{\Pi2}(t_1)$ повышающего МИП;

– при коэффициентах трансформации $n_{21} \ge 1$ максимальные значения токов $I_{H1 max}$ и $I_{\Pi 2 max}$ определяются значением $I_{H1\Pi 2 max1}$ в соответствии с соотношением (33) и имеют место в каждом из периодов T_{Π} в момент времени $t \rightarrow t_1$, соответствующий состоянию до указанной выше коммутации $VT1_k$ очередного СК.

Минимальные значения токов $I_{H1 min}$ и $I_{\Pi 2 min}$ соответственно в цепях нагрузки понижающего и питания повышающего МИП также зависят от коэффициента трансформации n_{21} .

При $n_{21} = 1$ минимальные значения токов $I_{H1 min}$ и $I_{\Pi 2 min}$ имеют место в каждом периоде T_{Π} в конце интервала времени Δt_2 (при $t \to T_{\Pi}$) и определяются как

$$I_{H1 \min} = I_{\Pi 2 \min} = I_{H1\Pi 2 \min 1};$$
(35)

$$I_{_{\text{H}1\pi2\ min1}} = \sum_{_{1}}^{^{N}} i_{_{Lk}} (t \to T_{_{\pi}}) = \sum_{_{1}}^{^{p_2}} i_{_{LHk}} (t \to T_{_{\pi}}) + \sum_{_{p_2}+_{1}}^{^{N}} i_{_{LBk}} (t \to T_{_{\pi}}).$$
(36)

С учетом соотношения (22) при $t \to T_{\Pi}$ для тока $I_{H1\Pi 2 \min 1}$ получим

где $I_{mint 2} = p_2 I_{min 1} + \P - p_2 I_{min 2}.$

Поскольку при $n_{21} > 1$ размахи пульсаций $I_{m1k} = n_{21k}I_{m2k} = I_{m1} = I_{m2}n_{21}$, минимальные $I_{min1k} = n_{21k}I_{min2k} = I_{min1} = I_{min2}n_{21}$ и максимальные $I_{max1k} = n_{21k}I_{max2k} = I_{max1} = I_{max2}n_{21}$ токи становятся больше (соответственно I_{m2} ($I_{m1}>I_{m2}$), I_{min2} ($I_{min1}>I_{min2}$) и I_{max2} ($I_{max1}>I_{max2}$)), то в момент времени $t = t_1$ происходит скачкообразное уменьшение суммарного тока $i_{H1}(t_1)$ – в цепи нагрузки понижающего МИП и $i_{n2}(t_1)$ – в цепи питания повышающего МИП на величину $I_{max1} - I_{max2}$ из-за уменьшения (с p_1 на $p_1 - 1$) на единицу числа дросселей, накапливающих электрическую энергию. При этом значения токов нагрузки $i_{H1}(t_1)$ понижающего и потребления $i_{n2}(t_1)$ повышающего МИП определяются в виде

$$i_{H1}(t_{1}) = i_{\Pi 1}(t_{1}) = i_{H1\Pi 2}(t_{1}),$$

$$i_{H1\Pi 2}(t_{1}) = I_{H1\Pi 2}_{max} - I_{max1} + I_{max2},$$

$$\Pi \mu n_{21} > 1;$$
(38)

где $I_{H1\pi 2max}$ определяется соотношением (32).

По мере увеличения коэффициента трансформации n_{21} при $(n_{21} > 1)$ будут увеличиваться уровни пульсаций суммарных токов дросселей в момент времени $t = t_1$ в каждом из периодов $T_{\text{п}}$. И при граничном коэффициенте трансформации $n_{21\text{гран1}}$ минимальные значения токов нагрузки $I_{\text{н1} min}$ понижающего и питания $I_{\text{п2} min}$ повышающего МИП для моментов времени $t \rightarrow T_{\text{п}}$ и $t = t_1$ становятся равными:

$$\sum_{1}^{N} i_{Lk} (t = t_1) = \sum_{1}^{N} i_{Lk} (t \to T_n) = I_{\mu 1 n 2 r p a \mu 1} \quad \text{при} \quad n_{21} = n_{21 r p a \mu 1} > 1.$$
(39)

С учетом изложенного выше, для коэффициентов автотрансформации $n_{21} \ge 1$, запишем

$$I_{_{\text{H1} min}} = I_{_{\text{H2} min}} = I_{_{\text{H1}\text{H2}\text{rpaH1}}} = I_{_{\text{H1}\text{H2}\text{rpaH1}}} = n_{_{21}\text{rpaH1}} > 1;$$
(40)

$$I_{H^{1}n^{2}rpaH^{1}} = I_{H^{1}n^{2} min^{1}} = i_{H^{1}n^{2}} (t = t_{1}) \qquad \text{при} \quad n_{21} = n_{21rpaH^{1}}, \qquad (41)$$

где $I_{H1\pi 2 \min 1}$ и $i_{H1\pi 2}(t=t_1)$ определяются соотношениями соответственно (37) и (38).

При увеличении n_{21} более $n_{21rpaH1}$ (при $n_{21} > n_{21rpaH1}$) происходит дальнейшее увеличение размахов пульсаций $I_{m1k} = n_{21}I_{m2k}$ и минимальных токов $I_{min1k} = n_{21}I_{min2k}$. Это, соответственно, приведет к уменьшению минимальных значений токов нагрузки $I_{H1 min}$ понижающего и питания $I_{n2 min}$ повышающего МИП, определяемых в моменты времени $t = t_1$ ($I_{H1 min} < I_{H1n2rpaH1}$, $I_{n2 min} < I_{H1n2rpaH1}$):

$$I_{\mu_1 \min} = I_{\pi_2 \min} = I_{\mu_1 \pi_2 \min 2} \quad \text{при} \quad n_{21} > n_{21 \text{гран 1}}, \ n_{21} > 1;$$
(42)

:

$$I_{_{\text{H}1\pi^2 \min 2}} = i_{_{\text{H}1\pi^2}} (t = t_1)$$
 при $n_{_{21}} > n_{_{21}\text{гран}1}, n_{_{21}} > 1$

С учетом соотношений (34), (38) при
$$n_{21} > n_{21}$$
гран1 для $t = t_1$ получим
 $I_{\mu 1 n 2 \ min 2} = I_{m1} p_1 \left[-(p_1 - 1)/2 N \kappa_{\mu} + I_{min 1} + I_{m2} b_1 \right] \left[-(b_1 + 1)/2 N \kappa_{\mu} - I_{max1} + I_{max2} \right],$ (43)
где $I_{min t1} = p_1 I_{min 1} + (p_1 - p_1) I_{min 2}.$

В случаях уменьшения коэффициента трансформации при $n_{21} < 1$ происходит увеличение амплитуд токов $I_{m2k} = I_{m2} = I_{m1}/n_{21}$, минимальных $I_{min\ 2k} = I_{min\ 2} = I_{min\ 1}/n_{21}$ и максимальных $I_{max\ 2k} = I_{max\ 2} = I_{max\ 1}/n_{21}$ токов. При этом происходит с одной стороны – увеличение минимальных значений токов $I_{H1\ min} = I_{n2\ min\ 1} = I_{H1n2\ min\ 1}$, определяемых как сумма токов дросселей всех силовых каналов в момент времени $t \rightarrow T_{\Pi}$ в каждом из периодов T_{Π} в соответствии с соотношениями (35)...(37), а с другой стороны, в момент времени $t = T_{\Pi}$ происходит с качкообразное уменьшение суммарного тока $I_{H1n2\ min\ 1}$, определяемого в соответствии с соотношением (37), на величину $I_{min\ 2} - I_{min\ 1}$ из-за уменьшения (с p_1 на $p_1 - 1$) в МИП на единицу числа дросселей, накапливающих электрическую энергию, и увеличения (с b_1 на $b_1 + 1$) на единицу числа дросселей, возвращающих электрическую энергию. Поэтому с учетом (37) для момента времени $t = T_{\Pi}$, запишем

$$I_{H1n2\ min3} = I_{m1}p_2 (p_2+1)/2N\kappa_{H} + I_{min12} + I_{m2}b_2 (b_2-1)/2N\kappa_{B} + I_{min1} - I_{min2}$$
(44)

Дальнейшее уменьшение коэффициента автотрансформации $n_{21} < 1$ приводит к тому, что при граничном коэффициенте трансформации $n_{21} = n_{21rpah2}$ минимальные значения токов нагрузки I_{H1min} понижающего и питания $I_{n2 min}$ повышающего МИП для моментов времени $t = T_{n}$, и $t \rightarrow t_{1}$ становятся равными $I_{H1n2rpah2}$:

$$I_{_{H1\pi2rpaH2}} = \sum_{1}^{N} i_{_{Lk}} (t = T_{_{\Pi}}) = \sum_{1}^{N} i_{_{Lk}} (t \to t_{_{1}}) \qquad \text{при} \ n_{_{21}} = n_{_{21rpaH2}};$$
(45)

$$\sum_{1}^{N} i_{Lk} (t = T_{\pi}) = I_{H1\pi2min3};$$

$$\sum_{1}^{N} i_{Lk} (t \to t_{1}) = I_{m1}p_{1} - (p_{1} - 1)/2N\kappa_{\pi} + I_{mint1} + I_{m2}b_{1} - (b_{1} - 1)/2N\kappa_{\pi} - (46)$$

где $I_{H1\pi 2min3}$ определяется соотношением (44).

При уменьшении коэффициента трансформации при $n_{21} < 1$ минимальные значения токов нагрузки $I_{H1 min}$ понижающего и потребления $I_{\Pi 2 min}$ повышающего МИП будут иметь место в каждом из периодов T_{Π} в моменты времени $t \rightarrow t_1$:

$$I_{H1min} = I_{D2min} = I_{H1D2min4}; \qquad I_{H1D2min4} = \sum_{1}^{N} i_{Lk} (t \to t_1).$$
(47)

С учетом (20) при $n_{21} < n_{21}$ гран2 для $t \rightarrow t_1$, получим

$$I_{\mu_{1}\pi_{2}\min 4} = I_{m_{1}}p_{1} - \P_{1} - I_{2}N\kappa_{\mu} + I_{mint_{1}} + I_{m_{2}}b_{1} - b_{1}/2N\kappa_{\mu} - \pi_{21}\kappa_{1} + I_{21}\kappa_{1} - h_{1}/2N\kappa_{\mu} - \mu_{21}\kappa_{1}\kappa_{1} - h_{1}/2\kappa_{1}\kappa_{1} - h_{1}/2\kappa_{1} -$$

С учетом изложенного выше для различных коэффициентов n_{21} для минимальных токов $I_{H1 min} = I_{\Pi 2 min} = I_{H1\Pi 2 min}$ запишем

-для коэффициентов $n_{21} < 1$:

$$I_{\mu \ln 2 \min 3} = \begin{cases} I_{\mu \ln 2 \min 3} = I_{m1} p_2 \left[\frac{p_2 + 1}{2N\kappa_{\mu}} \right] + I_{\min 2} + I_{m2} b_2 \left[\frac{(b_2 - 1)}{2N\kappa_{\mu}} \right] + I_{\min 1} - I_{\min 2} & \text{при} \quad n_{21} \ge n_{21\text{гран2}}; \\ I_{\mu \ln 2 \min 4} = I_{m1} p_1 \left[1 - \frac{(p_1 + 1)}{2N\kappa_{\mu}} \right] + I_{\min 1} + I_{m2} b_1 \left[1 - \frac{(b_1 + 1)}{2N\kappa_{\mu}} \right] & \text{при} \quad n_{21} \le n_{21\text{гран2}}. \end{cases}$$
(50)

Суммарные изменения токов во всех дросселях $\Delta I_{\text{нп}}$, определяющие пульсации тока нагрузки $I_{\text{н1}}$ понижающего и тока потребления $\Delta I_{\text{п2}}$ повышающего МИП, в интервалах времени Δt_1 и Δt_2 равны

$$\Delta I_{H1} = \Delta I_{H2} = \Delta I_{H1 H2} = I_{H1 H2 Max} - I_{H1 H2 Max},$$
(51)

где *I*_{н1п2 *max*}, *I*_{н1п2 *min*} определяется выражениями (32) и (49), (50) соответственно.

Переменные составляющие токов (соотношения (25), (30), (51)) позволяют аналогично [2] определить пульсации напряжения $\Delta U_{\rm BX~}$ на входе и $\Delta U_{\rm H~}$ на выходе МИП:

$$\Delta U_{BX} = \Delta I_{\pi y} R_{\pi} / \sqrt{R_{\pi}^2 \omega_N^2 C_{BX}^2 + 1};$$
 (52)

$$\Delta U_{_{_{H_{_{_{}}}}}} = \Delta I_{_{_{H_{_{}}y}}} R_{_{_{_{}H}}} / \sqrt{R_{_{_{_{}H}}}^2 \omega_{_{_{N}}}^2 C_{_{_{_{}H}}}^2 + 1}, \qquad (53)$$

где y = 1, 2, 3 — соответственно для понижающей, повышающей и инвертирующей схем МИП; $\omega_N = 2\pi N f_{\kappa}$, $R_{\Pi} = U_{\Pi}/I_{\Pi}$; U_{Π} , I_{Π} — напряжение и потребляемый ток источника первичного питания; R_{μ} — сопротивление нагрузки МИП.

Для обеспечения пульсаций напряжений в заданных пределах емкости конденсаторов на входе $C_{\rm bx}$ и выходе $C_{\rm h}$ должны удовлетворять следующему условию [2]:

$$C_{i} \geq \sqrt{\Delta I_{i}^{2} / (\Delta U_{i}^{2} \omega_{N}^{2}) - 1 / (R_{i} \omega_{N})^{2}},$$
(54)

$$C_{i} \geq \begin{cases} C_{\mu} & \Pi p_{\mu} \quad \Delta I_{i} = \Delta I_{\mu}, R_{i} = R_{\mu}, \Delta U_{i} = \Delta U_{\mu_{\pi}}; \\ C_{\mu_{\pi}} & \Pi p_{\mu} \quad \Delta I_{i} = \Delta I_{\mu}, R_{i} = R_{\mu}, \Delta U_{i} = \Delta U_{\mu_{\pi}}. \end{cases}$$
(55)

Соотношения (1) ... (55) являются обобщенными; при этом соотношения (1) ... (22), (52)...(55) при принятых допущениях справедливы для всех трех основных схем МИП, а каждое из соотношений (23) ... (50) – для двух схем МИП (в различных сочетаниях). Переход к конкретной схеме МИП осуществляется подстановкой в указанные обобщенные соотношения I_{min1k} , I_{min2k} , I_{m1k} , I_{m2k} , $\kappa_{\rm H}$ ($t_{\rm H}$), $\kappa_{\rm B}$ ($t_{\rm B}$), $U_{\rm H}$, которые в зависимости от конкретной схемы МИП определяются различными выражениями.

При безразрывном режиме работы средние значения токов в цепях питания I_{n1} , I_{n2} , I_{n3} и нагрузки I_{H1} , I_{H2} , I_{H3} , соответственно понижающего, повышающего и инвертирующего ОИП могут быть представлены в виде

$$I_{n1} = I_{n3} = I_{n13} = (I_{min1} + I_{m1}/2)N\kappa_{\mu};$$
(56)

$$I_{\mu 2} = I_{\mu 3} = I_{\mu 23} = (I_{\min 2} + I_{\max}/2) N \kappa_{\rm B};$$
(57)

$$I_{H1} = I_{H2} = I_{H12} = N \left[I_{min1} + I_{m1} / 2 \right] (\kappa_{H} + \kappa_{B} / n_{21}) -$$
(58)

Соотношения (25), (30), (51) и (56) ... (58) позволяют определить относительные значения переменных составляющих (размах пульсаций) токов на входе ΔI_{n1} , ΔI_{n2} , ΔI_{n3} и выходе ΔI_{H1} , ΔI_{H2} , ΔI_{H3} соответственно понижающего, повышающего и инвертирующего МИП:

$$\Delta \bar{I}_{n1} = \Delta \bar{I}_{n3} = \Delta I_{n13} / I_{n13} ;$$
(59)

$$\Delta \bar{I}_{H2} = \Delta \bar{I}_{H3} = \Delta I_{H23} / I_{H23} ; \qquad (60)$$

$$\Delta \bar{I}_{\mu_1} = \Delta \bar{I}_{\mu_2} = \Delta I_{\mu_1 \mu_2} / I_{\mu_1 \mu_2} .$$
 (61)

Рисунок 3 – Относительные пульсации тока $\Delta I_{\mu 1}$ МИП при N=4, $n_{21}=0.8$, $n_{21}=1.0$, $n_{21}=1.2$

Полученные результаты позволяют определить максимальные и минимальные значения токов и напряжений и их переменные составляющие во входных и выходных цепях трех основных структур МИП (понижающей, повышающей и инвертирующей), что дает возможность определить параметры силовых сглаживающих фильтров при оценке целесообразности использования различных структур МИП, оптимизация которых необходима при решении проблем миниатюризации.

В качестве иллюстрации к сказанному на рисунке 3 приведены зависимости относительных пульсаций тока нагрузки МИП понижающего типа (y=1) ΔI_{H1} (соотношение 61) от коэффициента накопления κ_{H} для различных значений коэффициента автотрансформации n_{21} ($n_{21} = 0.8, 1.0, 1.2$) при количестве СК N = 4.

Исходные данные – выходное напряжение МИП $U_{\rm H} = 10$ В, ток нагрузки $I_{\rm H} = 100$ А. Индуктивность первичной полуобмотки дросселя $L_1 = 4,76 \times 10^{-6}$ Гн, частота преобразования $f_{\rm K} = 100$ кГц. Видно (рис. 3), что при коэффициенте автотрансформации $n_{21} = 1.0$ (сплошная кривая) уровень пульсаций гораздо ниже, чем при $n_{21} \neq 1.0$ ($n_{21}=0.8$ – штриховая линия, $n_{21}=1.2$ – пунктирная линия). Относительные пульсации тока $\Delta \bar{I}_{\mu 1 n^2}$ МИП при $n_{21} = 1$ стремятся к нулю в точках, где коэффициент накопления $\kappa_{\rm H}$ кратен величине 1/N, причем таких точек во всем диапазоне регулирования на единицу меньше количества СК N. Например, при N=4 количество таких точек составляет 3 ($\kappa_{\rm H}$ =0,25; $\kappa_{\rm H}$ =0,5; $\kappa_{\rm H}$ =0,75).

выводы

В заключение можно сделать следующие выводы.

1. Выполнен анализ электрических процессов МИП с СК понижающего, повышающего и инвертирующего типов с автотрансформаторным включением дросселей при безразрывном режиме функционирования.

2. Получена математическая модель электрических процессов МИП при безразрывном режиме работы силовых каналов с автотрансформаторным включением дросселей, обобщенная к типу СК – его схемотехнической реализации, позволяющая определить максимальные и минимальные значения токов и напряжений и их переменные составляющие во входных и выходных цепях МИП, параметры силовых сглаживающих фильтров.

3. Представлен пример использования полученной математической модели для расчета относительных пульсаций тока нагрузки МИП. Показано, что отклонение коэффициента автотрансформации n_{21} от единицы $(n_{21} \neq 1)$ приводит к увеличению уровня пульсаций тока и напряжения, т.е. к ухудшению качества электрических процессов.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Концепція розвитку ВАТ «Укртелеком» до 2010 року. Одеса: ОНАЗ ім. О.С. Попова, 2006. 49 с.
- Кадацкий А.Ф. Электрические процессы в многофазных импульсных преобразователях постоянного напряжения при безразрывных токах дросселей / А.Ф. Кадацкий, А.В. Саксонов // Электронная техника в автоматике. – 1985. – Т. 16. – С.67 – 78.
- Кадацкий А.Ф. Анализ электрических процессов в импульсных преобразователях постоянного напряжения с широтно-импульсным методом регулирования / А.Ф. Кадацкий, А.П. Русу // Электричество. 2005. № 9. С.43 54.