5,2009

621.397

., ., C

. . .

[1].

PLANNING PRINCIPLES OF DIGITAL TERRESTRIAL TV IN THE COUNTRIES WITH A DIFFICULT RELIEF

MIKHAYLOV S.A, DRAGANOV V.M., MAKOVEYENKO D.A., GASSAN HALIL

Odessa national academy of telecommunications named after A.S. Popov

Summary. Quantitative results losses of diffraction in the conditions of a mountain relief are received. Recommendations concerning a choice of parameters of physical level are developed at construction of a network of a digital terrestrial broadcasting announcement in the Syrian Arab Republic.

· -

, [2]

. [3]

. [3] , " " "

·

1.

$$E = E_{0} \frac{\exp(-jks_{1})}{s_{1}} D^{\perp} \sqrt{\frac{s_{1}}{s_{2}(s_{1} + s_{2})}} \exp(-jks_{2}), \qquad (1)$$

$$\vdots$$

$$E - \qquad ; E_{0} - \qquad ; s_{1} - \qquad ; k - \qquad ; k - \qquad ,$$

$$2\pi/\lambda; D^{\perp} - \qquad , \qquad ($$

[2]: $D^{\parallel} = \frac{-\exp(-j\pi/4)}{2n\sqrt{2\pi k}} \left[\operatorname{ctg}\left(\frac{\pi + (\Phi_{2} - \Phi_{1})}{2n}\right) F(kLa(\Phi_{2} - \Phi_{1})) + \exp\left(\frac{\pi - (\Phi_{2} - \Phi_{1})}{2n}\right) F(kLa(\Phi_{2} - \Phi_{1})) + R_{0}^{\parallel} \operatorname{ctg}\left(\frac{\pi - (\Phi_{2} + \Phi_{1})}{2n}\right) F(kLa(\Phi_{2} + \Phi_{1})) + R_{n}^{\parallel} \operatorname{ctg}\left(\frac{\pi + (\Phi_{2} + \Phi_{1})}{2n}\right) F(kLa(\Phi_{2} + \Phi_{1})) \right]$ (2)

$$F(x) = 2j\sqrt{x} \exp(jx) \int_{\sqrt{x}}^{\infty} \exp(-jt^2) dt, \qquad (3)$$

$$\int_{\sqrt{x}}^{\infty} \exp(-jt^2) dt = \sqrt{\frac{\pi}{8}} (1 - j) - \int_{0}^{\sqrt{x}} \exp(-jt^2) dt.$$
 (4)

$$R_0^{\stackrel{1}{\sqcap}}$$
 , $R_n^{\stackrel{1}{\sqcap}}$ –

$$R^{\perp} = \frac{\sin(\Phi) - \sqrt{\eta - \cos(\Phi)^2}}{\sin(\Phi) + \sqrt{\eta - \cos(\Phi)^2}}$$
 (5)

$$R^{\parallel} = \frac{\eta \sin(\Phi) - \sqrt{\eta - \cos(\Phi)^2}}{\eta \sin(\Phi) + \sqrt{\eta - \cos(\Phi)^2}},$$
 (6)

$$\Phi = \Phi_1$$
 R_0 $\Phi = (n - \Phi_2)$ R_n ; $\eta = \varepsilon_r - j \cdot 8 \cdot 10^9 \sigma / f$; $\varepsilon_r - j \cdot 8 \cdot 10^9 \sigma / f$; $\varepsilon_r - j \cdot 8 \cdot 10^9 \sigma / f$

$$D^{\stackrel{\perp}{|}}$$
 ,

$$\operatorname{ctg}\left(\frac{\pm}{2n}\right) F(kLa^{\pm}(\)) \cong n \left[\sqrt{2 \ kL} \ \operatorname{sign}(\) - 2kL\varepsilon \exp(j\pi/4)\right] \exp(j\pi/4) \quad (7)$$

ε,

$$\varepsilon = \pi + \beta - 2\pi n N^{+} \qquad \beta = \Phi_{2} + \Phi_{1} \tag{8}$$

$$\varepsilon = \pi + \beta - 2\pi n N^{+} \qquad \beta = \Phi_{2} + \Phi_{1}$$

$$\varepsilon = \pi - \beta + 2\pi n N^{-} \qquad = \Phi_{2} - \Phi_{1}.$$
(8)

 $(\Phi_2 - \Phi_1) < ,$

$$E_{DL} = \begin{cases} E + \frac{\exp(-jks)}{s} & \Phi_2 < \Phi_1 + \pi \\ E & \Phi_2 \ge \Phi_1 + \pi, \end{cases}$$
(10)

 $(\Phi_2 - \Phi_1) =$ (2) (7).

 E_{df}

 $(3) E_0 = 1$

, 5,2009

$$E_{df} = 20\log\left(\left|\frac{s E}{\exp(-jks)}\right|\right),\tag{11}$$

2.

, (. . . 1) n = 2, (2)-(11)

2 –

, $v = \sqrt{\frac{2 h \theta}{2}}, \qquad (12)$

:

h - , , . . .

, h.

,

,

 $J(\nu) = -20 \log \left(\frac{\sqrt{[1 - C(\nu) - S(\nu)]^2 + [C(\nu) - S(\nu)]^2}}{2} \right),$ (13)

C(v) S(v) - ,

(5), F(v).

v, —0,78,

[4]: $J(\nu) = 6.9 + 20 \log \left(\sqrt{(\nu - 0.1)^2 + 1} + \nu - 0.1 \right). \tag{14}$ $\tag{11}$

3.

[5],

,

, . . (). . . (). . . (54,2 /), [6].

1 –

	64-QAM 3/4
	34 42 00 N 36 43 12 E
	8k
C/N	21,2
	1/4
,	22,39 /
	54,2 /
	26
	400
	95
	8
	, 10

[7].

(Single Frequency Network - SFN).
, [6] [5],
DVB-T,

5 , , ,

2 –

SFN DVB-T

		T	T		I		
				ı			
	64-QAM 3/4						
	34 42 00 N	34 55 30 N	34 33 00 N	34 30 48 N	34 47 00 N		
	36 43 12 E	36 15 43 E	36 42 00 E	37 40 00 E	36 19 00 E		
	8k						
C/N	21,2						
	1/4						
,	22,39 /						
	54,2 /						
	26						
	400	200	1	1	100		
	95	156	54	35	54		
	9	9	8	8	9		
	10						

1. 400

95 . 200

2. 156 . 45

2 1/4.

3. 1

Gap

Filler.

1 4. 35 .

Gap

Filler.

5. 100 54

5,2009

5 -

DVB-T 5 SFN

4.

. 5

DVB-T.

/[...,...]-: 1. 1984. – 272 .

2. (-R .526-10) -2007. -37.

3. 4.		/[. , . , .			
4. 5.	•	/[,,.] – .	, 1977. – 342 .	,
	//				/
6.					
. –		/ :[]. – 2009. – 2.	,	,	,
7.		, , , , , , , , , , , , , , , , , , ,	/ [,	,
	1	1988 – 144			