003.26:621.39+530.145

## PING-PONG PROTOCOL WITH COMPLETELY ENTANGLED STATES OF PAIRS AND TRIPLETS OF THREE-DIMENSIONAL QUANTUM SYSTEMS

## VASILIU E.V.

**Summary.** Two new versions of the ping-pong protocol of a quantum secure direct communication using completely entangled states of pairs and triplets of three-dimensional quantum systems are offered. These variants of the ping-pong protocol possess greater information capacity, than corresponding variants of the protocol with pairs and triplets of entangled qubits. The coding schemes and the measurements schemes for an eavesdropping control mode are developed. Detailed descriptions of the offered protocols are given.



| ,<br>_<br>_             | [2],<br>( ) ( ).<br>[2]               |
|-------------------------|---------------------------------------|
| ,                       | · [12, 13]. ,<br>, · · [14].          |
| n .<br>10 ,             | [15].                                 |
| ,<br>. ,                | · ( ) (                               |
| $\log_2 9 \approx 3,17$ | $-\log_2 27 \approx 4,75$ .           |
|                         | , , , , , , , , , , , , , , , , , , , |
| . [18, 19].             | , , , , , , , , , , , , , , , , , , , |
| , , ,                   | -<br>,<br>,                           |
| . [20]                  | - , , ,                               |
| ,<br>,<br>_ ,<br>,      | ·<br>,<br>, ,                         |
| ,                       | ·                                     |
| 1<br>, (),<br>,         | ,<br>,                                |
| [2, 21].                | - , [22].                             |
| ,<br>_                  | ,                                     |
| ,<br>,<br>, .           | ,                                     |
|                         |                                       |

,

|                                                                                                          | ,                                                                                                    | -                                                            |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|                                                                                                          |                                                                                                      |                                                              |
| ,                                                                                                        | -                                                                                                    | $\cdot \  \Psi \rangle  \Psi $                               |
| ( . 1),                                                                                                  |                                                                                                      | $ 1_{00}/\cdots 1_{22}$                                      |
| [23].                                                                                                    |                                                                                                      | _                                                            |
| – ,                                                                                                      | $ \Psi_{00} angle.$ , , ,                                                                            |                                                              |
| 1                                                                                                        | $\left \Psi_{00} ight angle$ ,                                                                       | $\left \Psi_{00} ight angle\ldots\left \Psi_{22} ight angle$ |
| (                                                                                                        | )                                                                                                    | , [23]                                                       |
| ,                                                                                                        | ( 1).                                                                                                | . 1                                                          |
| ,                                                                                                        | $ \Psi_{00} angle$ .                                                                                 | $ \Psi_{22}\rangle.$                                         |
| 1-                                                                                                       | $ \Psi_{\alpha}\rangle  \Psi_{\alpha}\rangle   =$                                                    |                                                              |
|                                                                                                          | $U_{::}$                                                                                             |                                                              |
| $\left  \Psi_{ij}  ight angle$                                                                           | $ \Psi_{00}\rangle  \Psi_{ij}\rangle,$                                                               | , $\left \Psi_{ij} ight angle$                               |
| $ \Psi_{00}\rangle = ( 00\rangle +  11\rangle +  22\rangle)/\sqrt{3}$                                    | $U_{00} =  0\rangle\langle 0  +  1\rangle\langle 1  +  2\rangle\langle 2 $                           | 00                                                           |
| $ \Psi_{10}\rangle = \left( 00\rangle + e^{2\pi i/3} 11\rangle + e^{4\pi i/3} 22\rangle\right)/\sqrt{3}$ | $U_{10} =  0\rangle\langle 0  + e^{2\pi i/3}  1\rangle\langle 1  + e^{4\pi i/3}  2\rangle\langle 2 $ | 10                                                           |
| $ \Psi_{20}\rangle = \left( 00\rangle + e^{4\pi i/3} 11\rangle + e^{2\pi i/3} 22\rangle\right)/\sqrt{3}$ | $U_{20} =  0\rangle\langle 0  + e^{4\pi i/3}  1\rangle\langle 1  + e^{2\pi i/3}  2\rangle\langle 2 $ | 20                                                           |
| $ \Psi_{01}\rangle = ( 01\rangle +  12\rangle +  20\rangle)/\sqrt{3}$                                    | $U_{01} =  1\rangle\langle 0  +  2\rangle\langle 1  +  0\rangle\langle 2 $                           | 01                                                           |
| $ \Psi_{11}\rangle = \left( 01\rangle + e^{2\pi i/3} 12\rangle + e^{4\pi i/3} 20\rangle\right)/\sqrt{3}$ | $U_{11} =  1\rangle\langle 0  + e^{2\pi i/3}  2\rangle\langle 1  + e^{4\pi i/3}  0\rangle\langle 2 $ | 11                                                           |
| $ \Psi_{21}\rangle = \left( 01\rangle + e^{4\pi i/3} 12\rangle + e^{2\pi i/3} 20\rangle\right)/\sqrt{3}$ | $U_{21} =  1\rangle\langle 0  + e^{4\pi i/3}  2\rangle\langle 1  + e^{2\pi i/3}  0\rangle\langle 2 $ | 21                                                           |
| $ \Psi_{02}\rangle = ( 02\rangle +  10\rangle +  21\rangle)/\sqrt{3}$                                    | $U_{02} =  2\rangle\langle 0  +  0\rangle\langle 1  +  1\rangle\langle 2 $                           | 02                                                           |
| $ \Psi_{12}\rangle = \left( 02\rangle + e^{2\pi i/3} 10\rangle + e^{4\pi i/3} 21\rangle\right)/\sqrt{3}$ | $U_{12} =  2\rangle\langle 0  + e^{2\pi i/3}  0\rangle\langle 1  + e^{4\pi i/3}  1\rangle\langle 2 $ | 12                                                           |
| $ \Psi_{22}\rangle = \left( 02\rangle + e^{4\pi i/3} 10\rangle + e^{2\pi i/3} 21\rangle\right)/\sqrt{3}$ | $U_{22} =  2\rangle\langle 0  + e^{4\pi i/3} 0\rangle\langle 1  + e^{2\pi i/3} 1\rangle\langle 2 $   | 22                                                           |

1.

2.

,

 $\left| \Psi_{00} 
ight
angle$  ,

("

,

")

,

\_

.

,

[17].

("

. 1).

(

-

-

")

•





), , 
$$\langle e_i | e_j \rangle = 1/\sqrt{d}$$
,  $d -$  ,  $\langle d = 3$  ).

t-

*v*-

:

[20], х-

•

,

*z*-

$$|z_0\rangle = |0\rangle, \qquad |z_1\rangle = |1\rangle, \qquad |z_2\rangle = |2\rangle;$$

$$|x_0\rangle = (|0\rangle + |1\rangle + |2\rangle)/\sqrt{3}, \qquad (1)$$

,

$$|x_{1}\rangle = (|0\rangle + e^{2\pi i/3}|1\rangle + e^{-2\pi i/3}|2\rangle)/\sqrt{3},$$
  

$$|x_{2}\rangle = (|0\rangle + e^{-2\pi i/3}|1\rangle + e^{2\pi i/3}|2\rangle)/\sqrt{3};$$
(2)

$$\begin{aligned} |v_{0}\rangle &= \left(e^{2\pi i/3}|0\rangle + |1\rangle + |2\rangle\right) / \sqrt{3} ,\\ |v_{1}\rangle &= \left(|0\rangle + e^{2\pi i/3}|1\rangle + |2\rangle\right) / \sqrt{3} ,\\ |v_{2}\rangle &= \left(|0\rangle + |1\rangle + e^{2\pi i/3}|2\rangle\right) / \sqrt{3} ; \end{aligned}$$

$$(3)$$

| $\left t_{0}\right\rangle = \left(e^{-2\pi i/3}\left 0\right\rangle + \left 1\right\rangle + \left 2\right\rangle\right)/\sqrt{3};$ |     |
|-------------------------------------------------------------------------------------------------------------------------------------|-----|
| $ig t_1ig angle=ig(ig 0ig angle+e^{-2\pi i/3}ig 1ig angle+ig 2ig angleig)\!ig/\sqrt{3}$ ;                                           |     |
| $ t_2\rangle = ( 0\rangle +  1\rangle + e^{-2\pi i/3} 2\rangle)/\sqrt{3}.$                                                          | (4) |

 $\left|\Psi_{00}
ight
angle$ 

\_

$$|\Psi_{00}\rangle = (|00\rangle + |11\rangle + |22\rangle)/\sqrt{3} = (|x_0x_0\rangle + |x_1x_2\rangle + |x_2x_1\rangle)/\sqrt{3} = = (|t_0v_0\rangle + |t_1v_1\rangle + |t_2v_2\rangle)/\sqrt{3} = (|v_0t_0\rangle + |v_1t_1\rangle + |v_2t_2\rangle)/\sqrt{3}.$$
(5)

,

(5). *z*-, vt-\_ ,

,

, 1), (5). ( "1", , "2". \_ "0", , (5), v-(5) "0". t-

,

[1].

\_

-". -

22

,

\_

•

(1) – (4):



\_

\_

,

) [23].

,

(

,

|                                               |                                                                         |                                                                    | 27-                                   |                      | [23]:                |                      |                        |                      |
|-----------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------|----------------------|----------------------|----------------------|------------------------|----------------------|
|                                               | $ \Psi_{k}\rangle$                                                      | $_{nm} \rangle = \frac{1}{\sqrt{3}} \sum_{i=0}^{2} e^{2i i \pi i}$ | $2^{\pi i jk/3}  j\rangle \otimes  .$ | $j + n \mod d$       | $ 13\rangle j + m$   | $mod3\rangle$ ,      |                        | (                    |
| k, n, m = 02.                                 |                                                                         | <b>1</b> - <i>j</i> =0                                             |                                       |                      |                      |                      |                        |                      |
|                                               | $ \Psi_{000}\rangle =$                                                  | $( 000\rangle +  111\rangle$                                       | $+ 222\rangle)/\sqrt{3}$              |                      |                      |                      |                        |                      |
|                                               | 0007                                                                    |                                                                    | •                                     | ,                    |                      |                      |                        |                      |
| 27-                                           |                                                                         |                                                                    |                                       |                      | 27                   | 7                    |                        | •                    |
| $ \Psi_{i}\rangle\langle\Psi_{i} \rangle_{k}$ | n, m = 0                                                                | 2.                                                                 |                                       | ,                    | 2                    | 1                    |                        |                      |
| knm/(knm)                                     | . 2                                                                     |                                                                    | ,                                     |                      |                      |                      | . (U                   |                      |
| . 1).                                         |                                                                         |                                                                    |                                       |                      | ,                    |                      | y x = ŋ                |                      |
| •                                             |                                                                         |                                                                    |                                       |                      |                      |                      |                        |                      |
| 2 –                                           | $ig \Psi_{000} angle  ig \Psi_{000} angle \ldots ig \Psi_{222} angle$ - |                                                                    |                                       |                      |                      |                      |                        |                      |
| <i>U</i> (2)                                  | $U_{nm}(2)$                                                             |                                                                    |                                       |                      |                      |                      |                        |                      |
| $U_{n'm'}(3)$                                 | $U_{00}$                                                                | U <sub>10</sub> U <sub>20</sub>                                    | $U_{01}$                              | $U_{11}$             | U <sub>21</sub>      | U <sub>02</sub>      | <i>U</i> <sub>12</sub> | U <sub>22</sub>      |
| ${U}_{00}$                                    | $ \Psi_{000}\rangle$                                                    | $ \Psi_{100}\rangle$ $ \Psi_{200}\rangle$                          | $ \Psi_{010} angle$                   | $ \Psi_{110} angle$  | $ \Psi_{210} angle$  | $ \Psi_{020} angle$  | $ \Psi_{120} angle$    | $ \Psi_{220}\rangle$ |
| ${U}_{01}$                                    | $ \Psi_{001}\rangle$                                                    | $ \Psi_{101}\rangle$ $ \Psi_{201}\rangle$                          | $ \Psi_{011}\rangle$                  | $ \Psi_{111}\rangle$ | $ \Psi_{211}\rangle$ | $ \Psi_{021}\rangle$ | $ \Psi_{121}\rangle$   | $ \Psi_{221}\rangle$ |
| $U_{02}$                                      | $ \Psi_{002}\rangle$                                                    | $ \Psi_{102}\rangle$ $ \Psi_{202}\rangle$                          | $ \Psi_{012}\rangle$                  | $ \Psi_{112}\rangle$ | $ \Psi_{212}\rangle$ | $ \Psi_{022} angle$  | $ \Psi_{122}\rangle$   | $ \Psi_{222}\rangle$ |
| (1) $(4)$                                     |                                                                         |                                                                    |                                       |                      |                      | 2 3                  |                        |                      |
| (1) - (4),                                    |                                                                         | 1-                                                                 |                                       |                      | ,                    |                      |                        | •                    |
| ,                                             |                                                                         | •                                                                  | . 3                                   |                      |                      |                      |                        |                      |
| ,                                             |                                                                         | ,                                                                  | 2- 3-                                 | ,                    |                      |                      |                        | •                    |
| ,                                             |                                                                         | ,                                                                  | ,                                     |                      |                      |                      |                        |                      |
|                                               |                                                                         |                                                                    | ,                                     |                      |                      |                      |                        |                      |
|                                               | ,                                                                       | <i>z</i> -                                                         |                                       |                      |                      | 3,                   | ,                      |                      |
| ,                                             |                                                                         |                                                                    | "0", "1                               | ' "2'                |                      | 1/3                  | 3                      |                      |
| 2-                                            |                                                                         |                                                                    |                                       |                      | $ \Psi_{000} angle$  |                      | $ 000\rangle$ ,        | 111>                 |
| $ 22\rangle$                                  | 1                                                                       |                                                                    | ,                                     |                      |                      | "0" '                | 101                    | 3-                   |
|                                               | 1-<br>"2"                                                               | " "?" _                                                            | :                                     |                      |                      | <sup>10</sup> , '    | U                      |                      |

5,2009

| -                          | 3 -           |                            |               |               | -             |               |               |               |
|----------------------------|---------------|----------------------------|---------------|---------------|---------------|---------------|---------------|---------------|
|                            | .1/3 -        | ,<br>.1 -                  |               | , , ,         | ,<br>.1 -     |               | ,<br>1/3 -    | ,<br>.1       |
| 2                          | 3             | 1                          | 2             | 3             | 1             | 2             | 3             | 1             |
|                            | •             |                            |               | 1             | x             |               | T             | 1             |
| $ x_0\rangle$              | $ x_0\rangle$ | $ x_0\rangle$              | $ x_1\rangle$ | $ x_0\rangle$ | $ x_2\rangle$ | $ x_2\rangle$ | $ x_0\rangle$ | $ x_1\rangle$ |
|                            | $ x_1\rangle$ | $ x_2\rangle$              |               | $ x_1\rangle$ | $ x_1\rangle$ |               | $ x_1\rangle$ | $ x_0\rangle$ |
|                            | $ x_2\rangle$ | $ x_1\rangle$              |               | $ x_2\rangle$ | $ x_0\rangle$ |               | $ x_2\rangle$ | $ x_2\rangle$ |
|                            |               |                            | •             | •             | v             |               |               |               |
| $ v_0\rangle$              | $ v_0\rangle$ | $ v_0\rangle$              | $ v_1\rangle$ | $ v_0\rangle$ | $ v_2\rangle$ | $ v_2\rangle$ | $ v_0\rangle$ | $ v_1\rangle$ |
|                            | $ v_1\rangle$ | $ v_2\rangle$              |               | $ v_1\rangle$ | $ v_1\rangle$ |               | $ v_1\rangle$ | $ v_0\rangle$ |
|                            | $ v_2\rangle$ | $ v_1\rangle$              |               | $ v_2\rangle$ | $ v_0\rangle$ |               | $ v_2\rangle$ | $ v_2\rangle$ |
|                            |               |                            | •             | •             | t             |               | •             |               |
| $\left t_{0}\right\rangle$ | $ t_0\rangle$ | $\left t_{0}\right\rangle$ | $ t_1\rangle$ | $ t_0\rangle$ | $ t_2\rangle$ | $ t_2\rangle$ | $ t_0\rangle$ | $ t_1\rangle$ |
|                            | $ t_1\rangle$ | $ t_2\rangle$              |               | $ t_1\rangle$ | $ t_1\rangle$ |               | $ t_1\rangle$ | $ t_0\rangle$ |
|                            | $ t_2\rangle$ | $ t_1\rangle$              |               | $ t_2\rangle$ | $ t_0\rangle$ |               | $ t_2\rangle$ | $ t_2\rangle$ |
|                            | •             |                            | •             | •             |               |               | •             | •             |

 1.
 .,
 . :
 , 2006.

 2. Bostrom K., Felbinger T. Deterministic secure direct communication using entanglement // Physical Review Letters. - 2002. - V. 89, 18. - 187902.

3. Deng F.-G., Long G.L., Liu X.-S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block // Physical Review A. – 2003. – V. 68, 4. – 042317.

4. Man, Zh.-X, Zhang Zh.-J., Li Y. Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations // Chinese Physics Letters. -2005. -V. 22, 1. -P. 18 -21.

5. Wang Ch., Deng F.G., Long G.L. Multi – step quantum secure direct communication using multi – particle Greenberger – Horne – Zeilinger state // Optics Communications. – 2005. - V. 253, 1. - P. 15 - 20.

6. Gao T., Yan F.-L., Wang Zh.-X. Quantum secure conditional direct communication via EPR pairs // International Journal of Modern Physics C. – 2005. – V. 16, 8. – P. 1293 – 1301.

7. Wang J., Zhang Q., Tang C.J. Multiparty controlled quantum secure direct communication using Greenberger – Horne – Zeilinger state // Optics Communications. – 2006. – V. 266, 2. – P. 732 – 737.

8. Gao T., Yan F.-L., Wang Zh.-X. Deterministic secure direct communication using GHZ states and swapping quantum entanglement// Journal of Physics A. – 2005. – V. 38, 25. – P. 5761 – 5770.

9. Gao T., Yan F.-L., Wang Zh.-X. A Simultaneous quantum secure direct communication scheme between the central party and other *M* parties // Chinese Physics Letters. -2005. - V. 22, 10. - P. 2473 - 2476.

10. Deng F.-G., Li X.-H., Li Ch.-Y., Zhou P., Liang Y.-J., Zhou H.-Y. Multiparty quantum secret report // Chinese Physics Letters. – 2006. – V. 23, 7. – P. 1676 – 1679.

Li X.-H., Li Ch.-Y., Deng F.-G., Zhou P., Liang Y.-J., Zhou H.-Y. Multiparty quantum remote secret con-11. ference // Chinese Physics Letters. - 2007. - V. 24, 1. - P. 23 - 26. Cai Q.-Y., Li B.-W. Improving the capacity of the Bostrom - Felbinger protocol // Physical Review A. -12 5. - 054301. 2004. – V. 69, 13. // . - 2007. - 1. - . 32 - 38. . . 14. // . - 2008. -. 1(29). – . 171 - 176. 15. Experimental demonstration of a hyper - entangled ten - qubit Schrodinger cat state / Gao W.-B, Lu C.-Y., Yao X.-C. et al // [ ] http://arxiv.org/abs/0809.4277. Thew T., Acin A., Zbinden H., Gisin N. Experimental realization of entangled qutrits for quantum com-16. munication // Quantum Information and Computation. - 2004. - V. 4, 2. – P. 93 – 101. Vaziri A., Pan J., Jennewein T., Weihs G., Zeilinger A. Concentration of higher dimensional entangle-17. ment: qutrits of photon orbital angular momentum // Physical Review Letters. - 2003. - V. 91, 22. - 227902. Cerf N.J., Bourennane M., Karlsson A., Gisin N. Security of quantum key distribution using d-level sys-18. tems // Physical Review Letters. - 2002. - V. 88, 12. - 127902. 19. Durt T., Kaszlikowski D., Chen J.-L., Kwek L. C. Security of quantum key distributions with entangled 3. – 032313. qudits // Physical Review A. – 2004. – V. 69, 20. Wang Ch., Deng F.-G., Li Y.-S., Liu X.-S., Long G. L. Quantum secure direct communication with high dimension quantum superdense coding // Physical Review A. – 2005. – V. 71, 4. – 044305. 21. . . . ., // v -2008», 15 - 302008 .-, « . 29. - . 34 - 40. 22. //

. - 2007. - 2. - . 36 - 44. . .

23. Liu X.-S., Long G.L., Tong D.M., Li F. General scheme for superdense coding between multiparties // Physical Review A. – 2002. – V. 65, 2. – 022304.