.

,

DWDM

POWER OPTIMIZATION OF LINEAR SIGNAL IN DWDM SYSTEM

٠,

PEDYASH V.V., RESHETNIKOVA O.S.

Odessa national academy of telecommunications named after A.S. Popov

Summary. The power optimization problem of a linear signal in multichannel system with spectral division of optical channels is considered taking into account nonlinear interference of an optical fibre and noise of the optical amplifier, formulas for power calculation of channel signals are deduced at different channel offsets.

DWDM (Dense Wavelength Division Multiplexing). () [1], () ASE). , DWDM ASE. DWDM () [2-3] , DWDM [2-3] $P_{ijk}(f_i, f_j, f_k) = \frac{\eta}{9} D^2 \gamma^2 P_i P_j P_k e^{-\alpha L} \left\{ \frac{(1-e^{-\alpha L})^2}{\alpha^2} \right\},$

27

(1)

(); α-L-. NRZ, DWDM, 3 • . λ γ $\gamma = \frac{2\pi n_2}{\lambda A},$ (2)

$$n_2$$
 - $(n_2 = 2,68 \cdot 10^{-20} \ ^2/);$
 A - $(A = 50 \ ^2).$

$$\eta = \frac{\alpha^2}{\alpha^2 + \Delta\beta^2} \left[1 + \frac{4e^{-\alpha L}\sin^2\left(\frac{\Delta\beta L}{2}\right)}{\left(1 - e^{-\alpha L}\right)^2} \right].$$
(3)

,

$$\Delta\beta = \frac{2\pi\lambda_k^2}{c}\Delta f_{ik}\Delta f_{jk} \left[D_c(\lambda) + \frac{\lambda_k^2}{2c} \left(\Delta f_{ik} + \Delta f_{jk} \right) \frac{dD_c(\lambda)}{d\lambda} \right],\tag{4}$$

$$\Delta f_{ik} = |f_i - f_k| \quad \Delta f_{jk} = |f_j - f_k|;$$
(3.10⁸ /c).
$$f_m$$

•

$$P_{-1}(f_m) = \sum_{i=1}^{N} \sum_{j=i}^{N} P_{ijk}(f_i, f_j, f_k), \qquad (5)$$

$$N$$
 -

_

$$f_{k} = f_{i} + f_{j} - f_{m}.$$

$$f_{m}$$

$$f_{m}$$

$$(1),$$

$$f_{m}$$

(*N* +1).

)

(

1 –

WDM

.

(

)

 $P_{1} \qquad () P_{1} . \\ G = P_{1} / P_{1} = 1/e^{-\alpha L}$ [5], (ASE)

$$P_{ase1} = 2n_{sp}(G-1)hf_m\Delta f_o, \tag{6}$$

 $\begin{array}{cccc} n_{sp} & - & & & & & & (n_{sp} \approx 1, 4); \\ h & - & & & & & (h = 6, 626 \cdot 10^{-34} & \cdot \); \\ \Delta f_o & - & & & & & & & & \\ (\Delta f_o \cong 1, 25B \); \\ B & - & & & & & & & & & \\ \end{array}$ WDM

$$P_{ase\Sigma} = P_{ase1}(N + 1).$$
⁽⁷⁾

:

$$P_{\Sigma} = P_{1}G(N + 1).$$
 (8)

ASE

[6]

$$P_{e \Sigma} = 2b^2 P_{1} \frac{P_{\Sigma}}{8}$$
⁽⁹⁾

29

$$P_{ease\Sigma} = 4b^2 P_{-1} P_{ase\Sigma} \frac{\Delta f_e}{\Delta f_o}, \qquad (10)$$

$$\Delta f_e$$
 ·

$$b \qquad [6]$$
$$b = \frac{\eta e}{h f_m}, \tag{11}$$

($\Delta f_e \cong 0,7B$).

$$\eta$$
 - $(\eta=0.8 \text{ pin});$
 e - $(e=1,6\cdot10^{-19}).$ [6]:

$$Q \approx \frac{bP_{1}}{\sqrt{P_{ease\Sigma} + P_{e-\Sigma}}}$$
(12)

$$P = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-\frac{x^{2}}{2}} dx.$$
 (13)

$$(1) - (11) , Q P$$

30

	_	(1).	(4) (3),
1)		(3) $\alpha^2 \ll \Delta \beta^2$,	$(\alpha^2 + \Delta\beta^2) \approx \Delta\beta^2;$
2)			(4)
$D_c(\lambda)$,	;
3)		(3) N	,
		$[0;2\pi],$ $\sin^2(\Delta\beta L/2) \approx 0,7^2 \approx 0$	0,5;
4)	(4)	$\lambda_k \approx 1550$	$(1 \le k \le N),$

(5)

, Δf ,

 P_1

$$P_{-1}(f_m) \approx const \cdot sum_{ij}, \tag{14}$$

$$const = \frac{1}{36} \frac{e^{-\alpha L} \left(1 + e^{-2\alpha L}\right) c^2 \gamma^2 P_1^3}{\left[\pi \lambda_k^2 D_c(\lambda_k)\right]^2 \Delta f^4}$$
(15)

$$sum_{ij} = \sum_{i=1}^{N} \sum_{j=i}^{N} \frac{D^2}{\left|i-k\right|^2 \left|j-k\right|^2} \,.$$
(16)

(16)
$$k = i + j - m \qquad 1 \le k \le N \,.$$

(m = N/2),

,

(16)

$$sum_{ijk} \approx 212, 8 \frac{\lg(N)}{N^{0,2}}.$$
 (17)

. 2

,

, $Q(P_{1})$ $P_{ease\Sigma} \approx P_{e-\Sigma}$. (9), (10) $Q(P_{1})$:

 $P_{\Sigma} \approx 9P_{\rm ase\Sigma} \,. \tag{18}$

•

$$P_{1} = \sqrt[3]{\frac{9P_{ase1}}{\frac{1}{36} \frac{e^{-\alpha L} \left(1 + e^{-2\alpha L}\right) c^{2} \gamma^{2} G}{\left[\pi \lambda_{k}^{2} D_{c}(\lambda_{k})\right]^{2} \Delta f^{4}}} sum_{ijk}}.$$
(19)

.1. ,

1 –

)

Δf ,	P ₁ ,
100	$1,45\alpha L+5,22$
50	$1,45\alpha L+1,2$
25	$1,45\alpha L-2,82$
12,5	$1,45\alpha L-6,83$

(19).

5.

Ν

1. Hill K. O., Johnson D. C., Kawasaki B. S., MacDonald R. I. CW three-wave mixing in single-mode optical fibers // Journal of Applied Physics. -1978. –Vol. 49, 10. –P. 5098-5106.

2. Tkach R.W., Chraplyvy A.R.; Forghieri F., Gnauck A.H., Derosier, R.M. Four-photon mixing and high-speed WDM systems //. – 1995. –Vol. 13, 5. –P. 841 - 849.

3. Song, S., Allen C.T., Demarest K.R., Hui R. Intensity-dependent phase-matching effects on four-wave mixing inoptical fibers // Journal of Lightwave Technology. -1999. – Vol. 17, 11. –P. 2285 – 2290.

4. Maeda M.W., Sessa W.B., Way W.I., Yi-Yan A., Curtis L., Spicer R., Laming, R.I. The effect of four-wave mixing in fibers on optical frequency-division multiplexed systems // Journal of Lightwave Technology. – 1990. –Vol. 8, 9. –P. 1402 – 1408.

EDFA // Lightwave russian edition. -2003. - 1. -C. 22-29.

6. Inoue K. A simple expression for optical FDM network scale considering fiberfour-wave mixing and optical amplifier noise // Journal of Lightwave Technology. – 1995. –Vol. 2, 5. –P. 856-861.

Q-