КОМПОЗИТНЫЕ КОДЫ БАРКЕРА

БАНКЕТ В.Л., ТОКАРЬ М.С.

THE COMPOSITE BARKER'S CODES

BANKET V.L., TOKAR M.S.

Аннотация. В статье рассмотрена структура «композитных» кодов Баркера, которые предназначены для синхронизации во времени систем многостанционного доступа с кодовым разделением сигналов. Такие коды имеют лучшие автокорреляционные свойства, чем канонические коды Баркера.

Abstrakt. The letter deals with the structure of Barker's codes, wich are for synchronization of *CDMA* systems destinating. The composite codes have more better autokorrelation properties then canonical Barker's codes.

ПОСТАНОВКА ЗАДАЧИ

Широкополосные радиосигналы широко используются в современных системах мобильной связи с кодовым делением абонентов (CDMA). При проектировании таких систем важным является решение следующих вопросов:

- 1. Выбор вида сигналов с требуемыми спектральными и корреляционными характеристиками;
- 2. Выбор метода синхронизации во времени генераторов псевдослучайных последовательностей (ПСП), используемых на передаче и приемной стороне (в мобильном терминале абонента).

В настоящее время применяются следящие устройства синхронизации генераторов ПСП на основе временного дискриминатора [4]. Недостатки схемы с дискриминатором следующие:

- 1. Сложность реализации;
- 2. Большое время вхождения в синхронизм;
- 3. Заметность абонентом длительных моментов срыва синхронизма в виде «*щелчков*» в речевом сигнале во время разговора.

Возможен альтернативный метод синхронизации, который обеспечивает малое время вхождения в синхронизм.

Метод сводится к следующему:

- 1. На передаче в начале каждого блока информационной последовательности (*чипа*), размещается специальный сигнал синхронизации (называемый в литературе, как «уникальное слово»);
- 2. На приемной стороне синхросигнал выделяется согласованным фильтром и запускает генератор псевдослучайной последовательности приемника, обеспечивая его синхронизацию во времени с передатчиком.

Такой метод синхронизации гарантирует малое время вхождения в синхронизм, сопоставимое с длиной уникального слова.

Реализация такого метода временной синхронизации требует решения *следующих* задач:

1. Выбор вида синхросигнала («уникального слова»), который должен иметь хорошие автокорреляционные свойства, обеспечивающие высокую вероятность его обнаружения на фоне помех;

2. Кроме этого, синхросигнал должен иметь малый уровень взаимной корреляции с информационным содержанием «чипа», что и определяет т.н. «уникальность» синхрослова и надежность синхронизации в реальных условиях.

Последовательности Баркера («коды Баркера») имеют хорошие автокорреляционные свойства и в силу этого часто применяются в системах временной синхронизации. В 1953г. Р. Баркер [1] опубликовал сведения об уникальных свойствах последовательностей разнополярных символов (именуемых в русскоязычных публикациях [2..5] кодами Баркера). Коды Баркера обладают уникальной формой автокорреляционной функции, что служит основанием для их применения в цифровых системах цикловой (кадровой) синхронизации [4].

Анализ показывает, что помехоустойчивость системы цикловой синхронизации определяется не только уникальными автокорреляционными свойствами кодов Баркера, но и возрастает с увеличением полной энергии синхросигналов, т.е., фактически, с увеличением длины последовательности Баркера. Поэтому для построения помехоустойчивых систем синхронизации необходимо использовать более длинные последовательности (коды) Баркера.

В настоящее время, известно ограниченное количество кодов Баркера весьма короткой длины m<13. Подробные таблицы таких кодов можно найти в монографии [4, табл.10.1]. Там же, на стр.663 сообщаются не вполне точные сведения о попытках Линдера поиска последовательностей длиной до m=40, обладающих уникальными свойствами кодов Баркера.

Задача настоящей работы — предложить конструктивный способ построения длинных синхрослов с хорошими автокорреляционными свойствами, пригодных для систем цикловой синхронизации и избавляющий от необходимости переборного их поиска, а также провести проверку помехоустойчивости обнаружения синхросигналов в случайном потоке информационных символов.

1. КАНОНИЧЕСКИЕ КОДЫ БАРКЕРА

Основные свойста известных кодов Баркера, именуемых далее *каноническими*, сводятся к следующему[1,2]. Рассмотрим последовательность конечной длины

$$C(i) = (c_1, c_2, c_3, \dots c_i, \dots, c_m),$$

в которой значения символов c_i выбираются из алфавита $\{+1,-1\}$, а m есть длина последовательности.

Апериодическая функция автокорреляции (АКФ) такой последовательности определяется так:

$$R(k) = \frac{1}{m} \sum_{i=0}^{m} c(i)c(i+k)$$
 (1)

Анализ показывает, что АКФ канонических кодов равна:

$$R(k)=m$$
 при $k=0$;
 $R(k)=0$ при $k>1,(m-k)$ – четное;
 $R(k)=+-(1/m)$ при $k>1,(m-k)$ – нечетное. (2)

В табл.1 приведен фрагмент таблицы коротких кодов Баркера из книги [4]. Полярность символов отмечена знаками «+» и «–».

ЦИФРОВІ ТЕХНОЛОГІЇ, № 2, 2007

Форма сигнала Баркера C7 при m=7 показана на рис. 1^* .

Таблица 1 – Короткие коды Баркера

Длина кода	Обозначение	Последовательность
m	кода	СИМВОЛОВ
1	<i>C</i> 1	+
2	C2	-+
3	C3	++-
4	C4	+++-
5	C5	+++-+
7	C7	+-++
13	C13	++++++-+

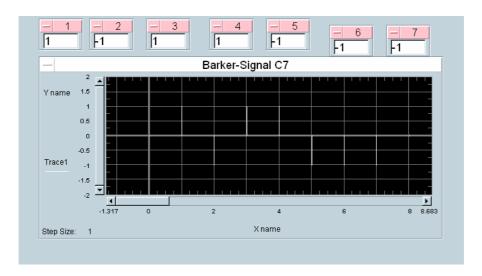


Рисунок 1— Временная диаграмма короткого сигнала Баркера С7. Вертикальные линии показывают уровни и местоположение элементарных сигналов c_i , значения которых представлены в нумерованных окнах.

Форма АКФ этого сигнала C7 (m=7) показана на рис.2.

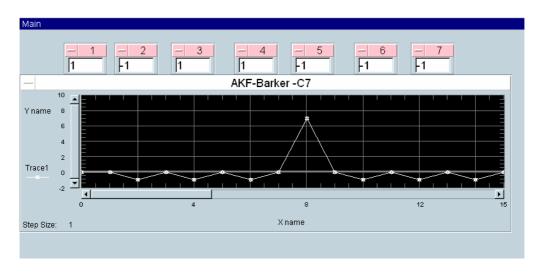


Рисунок 2 – Функция автокорреляциии короткого сигнала Баркера C7. Точками отмечены значения АКФ.

^{*} Приводимые в этой статье временные диаграммы процессов и количественные результаты получены моделированием с использованием пакета прикладных программ *HP VEE*.

Наличие пика АКФ, среди близких к нулю значений боковых лепестков и определяет *«уникальность»* сигналов Баркера.

Выделение синхронизирующих сигналов Баркера из потока цифровых данных, производится с применением согласованных фильтров(СФ). Импульсная реакция СФ, согласованного с сигналом Баркера C(t) есть с точностью до постоянного множителя(a) зеркальное отображение формы сигнала:

$$g(t)=aC(t_0-t),$$
(3)

где : t_0 – момент отсчета выхода СФ.

Максимум отклика фильтра, согласованного с сигналом C(t), пропорционален полной энергии этого сигнала E_c , а отношение сигнал/шум, важное для определения вероятности обнаружения синхросигнала будет:

$$Q=(E_c/N_0). (4)$$

Отсюда ясно, что для повышения помехоустойчивости обнаружения синхросигнала его энергию и, соответственно, длину m необходимо повышать.

2. КОМПОЗИТНЫЕ КОДЫ БАРКЕРА

Композитные коды Баркера позволяют синтезировать длинные синхропоследовательности с хорошими автокорреляционными свойствами. Для синтеза используется пара коротких последовательностей Баркера (например, из табл.1). Выберем сначала произвольную последовательность C_m длины m, которую далее будем именовать «элементарной», и затем выберем произвольную последовательность C_M длины M, которую далее будем именовать «образующей».

Композитный код есть код Баркера, построенный по правилам формирования образующей последовательности $C_{\rm M}$, в которой элементами являются «элементарные» последовательности $C_{\rm m}$.

Сказанное иллюстрируем примером, в котором в качестве элементарной последовательности C_m , выбрана последовательность Баркера C7 из табл.1, а в качестве образующей выбрана последовательность Баркера C2 из табл.1, знаки символов которой определяют знаковые множители элементарных последовательностей C_m . Процесс формирования такого композитного кода представлен в табл.2. В таблице показана свертка C2*C7 знаковых последовательностей C2 и C7, а также итоговая последовательность композитного кода C2/C7, в которой предусмотрены знаки (\emptyset \emptyset) защитных промежутков, исключающие взаимное перекрытие символов элементарных последовательностей.

Таблица 2- Формирование композитного кода С2/С7

Образующий, элементарный и	Формирование композитного кода				
итоговый композитный коды					
C2	_	+			
C7	+-++	+-++			
C2*C7	_+++	+-++			
C2/C7	-++++9000000000+-++				

В последующем , по аналогии с этим примером, композитные коды будут обозначаться, как дробь CM/Cm. Таким образом, общая длина такой композитной последовательности равна произведению

$$M_k=Mm.$$
 (5)

В этой формуле не учтены знаки защитных промежутков, количество которых можно свести к нулю точным формированием. На рис.3 представлена форма композитного синхросигнала C2/C7, соответствующего табл.2.

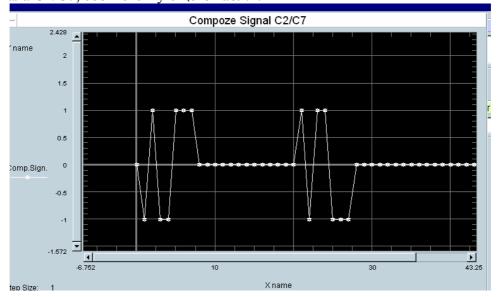


Рисунок 3 – Форма композитного синхросигнала С2/С7

Автокорреляционная функция сигнала C2/C7 имеет вид, показанный на рис.4. Видно, что максимум АКФ увеличился за счет накопления максимумов АКФ элементарного сигнала C7. Причем, значения положительных боковых лепестков не превышают величины 1/m. В то же время, проявились отрицательные боковые выбросы, которые, как показывают измерения, не снижают возможности обнаружения такого сигнала по положительному выбросу АКФ.

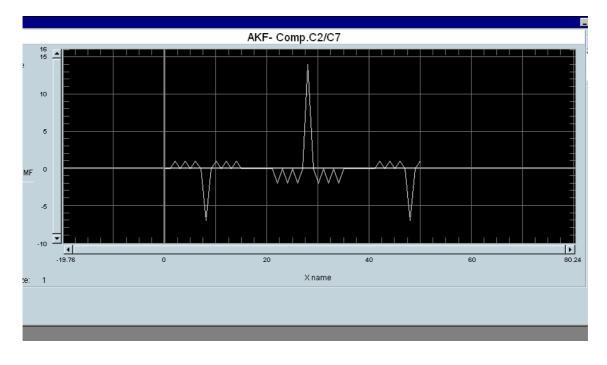


Рисунок 4 – Автокорреляционная функция композитного синхросигнала С2/С7

3. ОПТИМИЗАЦИЯ ВЕЛИЧИНЫ ПОРОГА РЕГИСТРАЦИИ СИНХРОСИГНАЛА

В системах с кодовым разделением сигналов абонентов используется прямое расширение спектра сигнала путем наложения на передаваемый сигнал псевдослучайной последовательности(ПСП) [4]. При этом информация передается блоками(т.н. *чипами*).. Общий вид структуры такого чипа показан на рис.5.

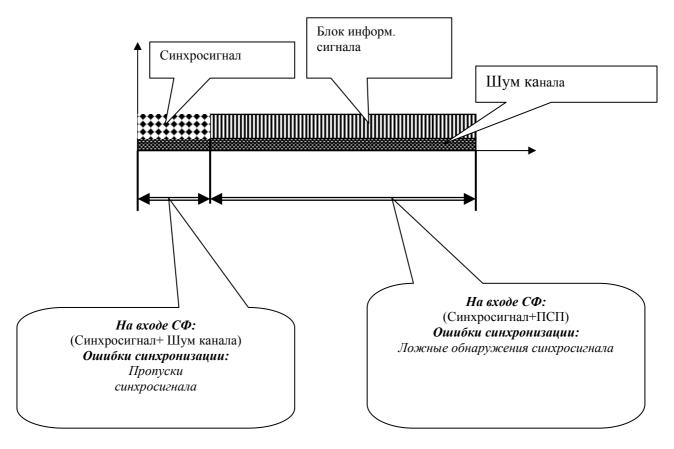


Рисунок 5 — Временная диаграмма приема блока (чипа) широкополосного сигнала вместе с сигналом синхронизации

Отмеченные в предыдущем разделе свойства композитных синхросигналов* уместно использовать в системах блоковой (кадровой, цикловой) синхронизации, для обнаружения границ блоков информационных сигналов.

Пороговый обнаружитель синхросигнала состоит из фильтра, согласованного с синхросигналом. Выход фильтра подается на пороговое устройство с фиксированным порогом L. При подаче на вход СФ синхросигнала отклик на его выходе определяется формой АКФ синхросигнала (1). Превышение выбросом АКФ порога L регистрируется, как временная отметка, используемая для синхронизации по времени.

Качество работы таких систем определяются следующими показателями:

1. Вероятностью ложного обнаружения границы блока информационного сигнала.

Ложное обнаружение синхросигнала возникает всякий раз, когда отрезок информационной последовательности содержимого чипа на входе С Φ принимает форму синхросигнала.

13

^{*} Предложенные синхросигналы можно условно называть «композитными кодами Баркера»,поскольку в основе их формирования лежат уникальные свойства кодов Баркера.

2.Вероятностью *пропуска* границы блока $P_{\rm пp}$ за счет подавления синхросигнала случайным шумом, поступающим из канала.

Пропуск синхросигнала возникает всякий раз, когда случайный шум, поступающий из канала, принимает форму, *инверсную* форме синхросигнала, и, соответственно, снижает уровень отклика на выходе согласованного фильтра. При этом синхросигнал не регистрируется.

Эти параметры ($P_{\text{по}}$ и $P_{\text{пр}}$) зависят от порогового уровня L обнаружителя синхросигнала, свойств синхросигнала, информационного сигнала и случайного шума. Эти параметри предстоит определить с целью сравнения свойств канонических и композитных кодов Баркера. Результаты исследований, выполненных с применением программ, разработанных в среде пакета прикладных программ HP VEE, приведены в следующих разделах.

4. ИССЛЕДОВАНИЕ ПРОЦЕССА ЛОЖНОГО ОБНАРУЖЕНИЯ СИНХРОСИГНАЛА

На входы фильтров, согласованных с каноническим (Cm) и композитным(CM/Cm) синхросигналами (соответственно), подавалась случайная последовательность равновероятных независимых символов $\{+1,-1\}$, имитирующая поток информационных символов содержания una. Вид процесса на выходе фильтра, согласованного с сигналом C7 показан на puc.6.

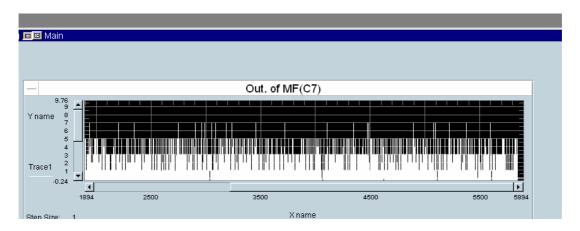


Рисунок 6 – Процесс на выходе фильтра, согласованого с сигналом С7.

Выбросы на выходе фильтра С7 на рис.6, достигают уровня 7, что соответствует данным рис.2. Выброс уровня 7, появляется всякий раз, когда отрезок информационной последовательности на входе С Φ совпадает с формой сигнала С7. Видно, что такие выбросы достаточно редки. Регистрировалось количество превышений предварительно установленного порога L, отмеченное на протяжении длительности теста N.

Величина N выбиралась равной 10^5 символов, что гарантировало точность определения вероятности ложных обнаружений. В этом случае вероятность ложных обнаружений определяется отношением:

$$P_{\pi 0} = N_{\pi 0} / N$$
. (6)

Результаты измерений приведены в табл.3.

Таблица 3 — Число ложных обнаружений синхросигналов $N_{\text{ло}}$ (длина теста $N = 10^5$ символов)

Порог	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
L															
C7	-	-	-	-	785	4	0	0	0	0	0	0	0	0	0
C2/C7	-	-	-		-	-	2680	676	634	97	81	8	3	0	0

Выбор больших значений порога L, превышающих максимум АКФ сигнала, недопустим, поскольку в этом случае будет пропущен синхросигнал. По данным табл.3, можно установить *предельно низкие значения* порога, гарантирующие приблизительно равные вероятности ложных обнаружения каждого из синхросигналов:

- Канонический сигнал C7: L=6, $P_{\pi 0}$ =4.10⁻⁵;
- Композитный сигнал C2/C7: L=13, $P_{\pi 0}$ =3.10⁻⁵.

Использование длинных композитных кодов, дает значительно лучшие результаты, по сравнению с короткими кодами. Это подтверждается данными измерений, приведеными в табл.4.

Тип кода Баркера								
	C7	C2/C7	C2/C13	C3/C13	C4/C13	C5/C13	C7/C13	
Длина кода <i>Мт</i>	7	14	26	39	42	65	91	
Максимальный уровень выброса АКФ макс	7	14	26	39	42	65	91	
Уровень выброса отклика СФ _{макс} при действии на входе случайной	7	14	24	27	28	36	37	
последовательности								

Таблица 4 – Сравнительные данные обработки согласоваными фильтрами коротких (канонических) и длинных (композитных) синхросигналов Баркера

 \mathbf{C} повышением синхросигнала, выбросов ДЛИНЫ уровень на выходе соответствующего СФ не достигает максимального значения выброса АКФ. Это наглядно иллюстрируется осциллограммой представленной на рис. 7. Представлен длинный композитный синхросигнал С7/С13, для которого можно установить порог уверенной регистрации L_0 =50 (L_0 <АК $\Phi_{\text{макс}}$ = 91). Видно, что выбросы процесса на выходе С Φ никогда не достигают этого порога. Аналогичные ситуации имеют место при обнаружении других исследованных длинных композитных синхросигналов (С2/С13...С7/С13). Здесь, всегда, между максимальным уровенем выброса АКФ $_{\text{макс}}$ и уровнем выброса отклика СФ $_{\text{макс}}$. имеется определенный запас Δ = АКФ $_{\text{макс}}$ – СФ $_{\text{макс}}$, что позволяет устанавливать порог уверенной регистрации синхросигнала в пределах этого интервала. При выполнении этого условия можно считать, что вероятность ложных обнаружений синхросигнала близка к нулю, что и подтверждает уникальность длинных композитных кодов.

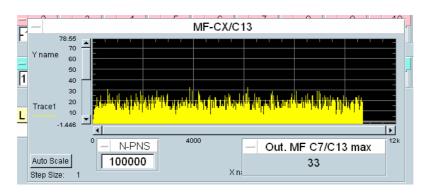


Рисунок 7– К иллюстрации прцесса регистрации композитного синхросигнала С7/С13

5. СРАВНЕНИЕ ПОМЕХОУСТОЙЧИВОСТИ СИНХРОСИГНАЛОВ

Для сравнения свойств помехоустойчивости канонического и композитного синхросигналов, необходимо совместное рассмотрение ошибок регистрации синхросигнала, обусловленных как ложными обнаружениями, так и пропусками синхросигнала. Будем считать, что каждая из этих ошибок ведет к ошибке правильного приема чипа (т.е. ошибки ложных обнаружений и пропусков синхросигнала равноценны). В таком случае критерием оптимизации порога регистрации является минимум суммарной вероятности ошибки регистрации

$$P_{o} = P_{\pi o} + P_{\pi c} . \tag{7}$$

Экспериментально в п. 4 установлено, что при установке порога синхросигнала в пределах этого интервала Δ = $AK\Phi$ _{макс} – $C\Phi$ _{макс} вероятность ложных обнаружений синхросигнала близка к нулю $(P_{n0}=0)$. В этих условиях помехоустойчивость приема синхросигналов в соответствии с формулой (7), определяется только вероятностью пропуска синхросигнала: $P_0 = P_{\text{пс}}$, которая может быть определена следующим образом. Для анализа процесса пропуска синхросигнал С7 в сумме с аддитивным шумом подавался на с ним фильтр. Особенности подавления синхросигнала шумом согласованный иллюстрируют временные диаграммы на рис.7 (синхросигнал без шума) и рис.8 (синхросигнал а сумме со случайным шумом). При подаче шума появляются «шумовая дорожка», а также модуляция по уровню максимумов АКФ случайным шумом. При этом каждое понижение уровня выхода $C\Phi$ наже порога сравнения L приводит к пропуску синхросигнала. Вероятность пропуска синхросигнала определялась расчетным путем по формуле:

$$P_{nc} = \frac{1}{2} erfc(\frac{\Delta}{\sqrt{2}\sigma}) \tag{8}$$

где:erfc(z)—дополнение до единицы функции ошибок, а разность Δ = АК $\Phi_{\text{макс}}$ –L соответствует «расстоянию»между максимумом АК $\Phi_{\text{макс}}$ и порогом регистрации L, преодолеваемому шумом с распределением Гаусса и дисперсией σ^2 .

Результаты расчетов суммарной вероятности ошибки регистрации синхросигналов по формулам (8) и (7) для различных значений отношения сигнал / шум в канале приведены в табл.5.

T (T	U		
120 matta = 110 MeVO	CTOBUIDOCTE PERIO	трании сиплросигнацов на	основе композитных кодов Баркера
	y CIONIANBOCIB DCINC	трации синхросигналов на	основе композитных кодов варкера

	Тип кода Баркера							
Длина кода Мт	C2/C13	C3/C13	C4/C13	C5/C13	C7/C13			
Максимальный	26	39	42	65	91			
уровень								
выброса АКФ макс								
Порог	25	37	39	62	87			
регистрации								
синхросигнала L								
Отношение	Вероятность ошибки регистрации синхросигналов P_{o}							
сигнал/шум в								
канале $E_6/N_0(дБ)$								
3.0	2.10^{-2}	3.10 ⁻⁵	1.10 ⁻⁹	1.10 ⁻⁹	7.10^{-16}			
5.0	7.10 ⁻³	1.10 ⁻⁹	1.10 ⁻²¹	1.10 ⁻²¹	5.10 ⁻³⁵			

Из данных табл.5 следует, что при выборе длинных синхросигналов на базе композитных кодов C5/C13 и C7/C13 вероятность ошибки регистрации синхросигнала значительно меньше, чем типовое значение вероятности ошибки бита в цифровых каналах мобильной связи($10^{-4}...10^{-5}$). Результаты измерений, полученные в разделе 4, показывают, что короткие канонические коды Баркера такой помехоустойчивости не обеспечивают.

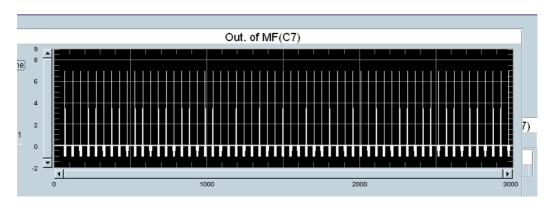


Рисунок 7— Выход СФ С7 (Шум отсутствует)

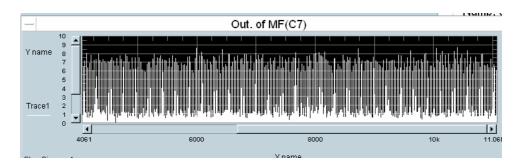


Рисунок 8 – Выход СФ С7 (Отношение сигна/шум 3дБ)

6. ЗАКЛЮЧЕНИЕ

- 1.Показано, что синхронизация во времени систем с кодовым разделением сигналов *CDMA* может быть реализована с применением кодов Баркера. При этом для обеспечения высокой помехоустойчивости, длина кода должна быть достаточно большой.
- 2. Предложен конструктивный метод формирования длинных синхросигналов на основе «композитных» кодов Баркера.
- 3.Экспериментальные исследования подтвердили *«уникальность»* композитных кодов.
- 4.Предложенный метод формирования длинных синхросигналов универсален: по изложенному в разд.2 алгоритму возможно каскадное построение композитных кодов, при котором на данном уровне формирования в качестве образующего кода выбирается короткий канонический код, а в качестве элементарного кода используется композитный код предыдущего уровня.

ЦИФРОВІ ТЕХНОЛОГІЇ, № 2, 2007

Литература

- 1.Barker R.H.Ground synchronizing of binary digital system //Communication theory–1953. –Vol.7. №2. P.273 –287.
- 2.Алексеев А.И.,Шереметьев А.Г.,Тузов Г.И. Теория и применение псевдослучайных сигналов.— М:Наука, 1969.-365 с.
- 3.Варакин Л.Е. Системы связи с шумоподобными сигналами.-М:Радио и связь, 1985.-384 с.
- 4.Скляр Б. Цифровая связь.Теоретические основы и практическое применение/Пер. с англ. М: Издательский дом «Вильямс». 2003.–1104 с.
- 5.Сукачев Э.А.Сотовые сети радиосвязи с подвижными объектами:Учебн. пособ. Одесса: УГАС, 1996. 82 с.