УДК 621.397

https://doi.org/10.33243/2313-7010-28-47-63

ПОТЕНЦІЙНО ДОСЯЖИЙ РІВЕНЬ ЧІТКІСТЬ ЗОБРАЖЕННЯ В ВІДЕОДОДАТКАХ

Гофайзен О.В., Кійко С.М.

Одесская национальная академия связи им. А.С. Попова вул. Кузнечна 1, м. Одеса, 65029, Україна ДП "Українский науково-дослідний інститут радіо і телебачення" вул. Буніна 31, м. Одеса, 65025, Україна svetlanankiyko@gmail.com

ПОТЕНЦИАЛЬНО ДОСТИЖИМЫЙ УРОВЕНЬ ЧЕТКОСТИ ИЗОБРАЖЕНИЯ В ВИДЕОПРИЛОЖЕНИЯХ

Гофайзен О.В., Кийко С.Н. Одесская национальная академия связи им. А.С. Попова ул. Кузнечная 1, г. Одесса, 65029, Украина ГП "Украинский научно-исследовательский институт радио и телевидения" ул. Бунина 31, г. Одесса, 65025, Украина svetlanankiyko@gmail.com

POTENTIALLY ACHIEVABLE LEVEL IMAGE DEFINITION IN VIDEO APPLICATIONS

Gofaizen O.V., Kiiko S.M. Odessa National Academy of Telecommunications named after O.S. Popov Kovalska st., Odessa, 65029, Ukraine SE "Ukrainian scientific-research institute of radio and television" Bunin st., Odessa, 65025, Ukraine svetlanankiyko@gmail.com

Анотація. В статті дана оцінка потенційно досяжного рівня чіткості для відеотракту передачі «від світла до світла», який можна вважати ідеальним, тобто таким, в якому зниження чіткості виникає тільки за рахунок дифракційних обмежень об'єктива і кінцевих розмірів перетворюючих елементів матричного сенсора камери і відтворюючого дисплея без додаткової обробки зображення. Побудовано приклади ПЧКХ наскрізних трактів для систем SDTV, HDTV, UHDTV 4K і UNDTV 8K для заданих параметрів об'єктива і сенсора камери з урахуванням спотворень, що вносяться відтворюючим дисплеєм.

Ключові слова. якість зображення, чіткість, просторово-частотна характеристика, об'єктив, частота Найквіста, просторові частоти.

Аннотация. В статье дана оценка потенциально достижимого уровня четкости для видеотракта передачи «от света до света», который можно считать идеальным, то есть таким, что снижение четкости в нем возникает только за счет дифракционных ограничений объектива и конечных размеров преобразующих элементов матричного сенсора камеры и воспроизводящего дисплея без дополнительной обработки изображения. Построены примеры ПЧКХ сквозных трактов для систем SDTV, HDTV, UHDTV 4K и UNDTV 8K для заданных параметров объектива и сенсора камеры с учетом искажений, которые вносятся воспроизводящим дисплеем.

Ключевые слова. качество изображения, четкость, пространственно-частотная характеристика, объектив, частота Найквиста, пространственные частоты.

Abstract. The paper gives an estimate of the potentially achievable level of definition for light-to-light video transmission path, which can be considered as ideal, i.e. such that a decrease in definition in it occurs only due to the diffraction limitations of the camera lens and the finite dimensions of the transforming elements of the camera matrix sensor and of the reproducing display without additional image processing. Examples of MTF of end-to-end paths for SDTV, HDTV, UHDTV 4K and UNDTV 8K systems for the specified parameters of the lens and camera sensor, taking into account the distortions introduced by the reproducing display, are presented.

Keywords. image quality, definition, modulation transfer function, camera lens, Nyquist frequency, spatial frequencies.

Чіткість зображення є одним з основних показників рівня телевізійних систем і споріднених з ними додатків. Для оцінки чіткості зображення в телебаченні широко використовується частотноконтрастна характеристика (ЧКХ) $K(v_1, v_2)$, яка надається як залежність відносного контрасту зображення штриховий випробувальної таблиці з синусоїдальним законом зміни яскравості, де просторова частота і напрямок зміни яскравості характеризуються частотами V_1 і V_2 , обчислюваними як число напівперіодів зміни яскравості (телевізійних ліній – TVL) в горизонтальному і вертикальному напрямках, що припадають на відстань, рівну висоті кадру.

У даній статті дана кількісна оцінка досяжною чіткості зображення, що оцінюється за двовимірною просторовою частотно-контрастною характеристикою (MTF) ТВ системи з урахуванням обмежень, властивих об'єктиву камери, спотворень, що вносяться сенсором камери і відтворює дисплеєм, що виникають через кінцевих розмірів перетворює елемента, ефективний розмір якого дорівнює елементу зображення системи розгортки. Обговорюються питання і пропонується алгоритм можливої корекції виникаючих спотворень для широкої варіації параметрів камер і розмірів сенсора.

Частотно-контрастна характеристика наскрізного ТВ тракту «від світла до світла». При описі характеристик цифрових систем основоположним є вибір просторової частоти дискретизації, яка визначається числом періодів зміни яскравості, що припадають на заданий інтервал; при цьому частота дискретизації, що обчислюється для відеододатків числом напівперіодів зміни яскравості, вдвічі вище.

Тому для ТВ систем і багатьох інших відеододатків, для яких максимальне число напівперіодів зміни яскравості, що припадають на висоту кадру, яке може бути передано системою, дорівнює числу активних рядків розгортки z_a , зазначений вище вибір визначення частот V_1 і V_2 відповідає просторовій частоті дискретизації $V_s = 2z_a$ і відповідно частоті Найквіста, яка дорівнює $V_N = z_a$.

Щоб оцінити чіткість зображення, необхідно враховувати внесок всіх ланок телевізійного тракту «від світла до світла».

Наскрізна ЧКХ телевізійного (ТВ) тракту «від світла до світла» може бути визначена як

$$K_{\Sigma}(\nu_1,\nu_2) = K_{\text{lens}}(\nu_1,\nu_2) \cdot K_{\text{sensor}}(\nu_1,\nu_2) \cdot K_{\text{ETP}}(\nu_1,\nu_2) \cdot K_{\text{disp}}(\nu_1,\nu_2), \qquad (1)$$

де $K_{\text{lens}}(v_1, v_2)$ – ЧКХ об'єктива камери, $K_{\text{sensor}}(v_1, v_2)$ – ЧКХ матричного сенсора – перетворювача «світло-сигнал», $K_{\text{ETP}}(v_1, v_2)$ – ЧКХ електричного тракту передачі, $K_{\text{disp}}(v_1, v_2)$ – ЧКХ відтворювального дисплея – перетворювача «сигнал-світло».

ЧКХ об'єктива залежить від його пристрою і налаштувань і може залежати від декількох видів спотворень, властивих різним варіантам реалізації об'єктива. Прогрес оптики привів до того, що в ідеальному випадку різні види спотворень можуть бути компенсовані за рахунок конструкції об'єктива, і принципово досяжною є чіткість, що забезпечується об'єктивом, обмежується дифракційною межею і залежить від довжини хвилі світла λ , від апертурного кута об'єктива σ і від вертикального розміру матричного сенсора h_{sensor} . Для випадку, коли можна враховувати тільки дифракційне обмеження, ЧКХ об'єктива описується формулою [1-3]:

$$K_{\text{lens}}(\nu_1,\nu_2) = \frac{2}{\pi} \left[\arccos \chi - \chi \sqrt{1-\chi^2} \right], \qquad (2)$$

де

$$\chi = \sqrt{\nu_1^2 + \nu_2^2} / \nu_{\text{max}} , \qquad (3)$$

$$v_{\rm max} = (4h_{\rm sensor}\sin\sigma)/\lambda\,,\tag{4}$$

$$\sigma = \operatorname{arctg} \frac{1}{2} \frac{D}{f} \,. \tag{5}$$

Тут $\chi \in \overline{0,1}$ – відносна частота, f и D – фокусна відстань та відносний отвір об'єктиву. Параметри h_{sensor} та λ повинні вимірюватися в одних и тих же одиницях. Для розрахунку ЧКХ може бути прийнята довжина хвилі $\lambda = 550 \text{ nm}$, яка відноситься до середньої частини видимого діапазону.

Використання ЧКХ $K_{lens}(v_1, v_2)$ дозволяє охарактеризувати просторову двовимірну ЧКХ з круговою симетрією об'єктива камери для випадку, коли якість зображення обмежена тільки дифракційними властивостями, а інші типи спотворень на сучасному рівні технологій можуть бути компенсовані (див., Наприклад, [4]).

У таблиці 1 наведені параметри об'єктивів і матричних сенсорів, призначених для використання в телевізійних, кінематографічних та інших камерах, взяті з [5-8], стосовно до систем SDTV, HDTV, UHDTV 4K і UHDTV 8K, і відповідні розраховані за формулою 2 рівні ЧКХ об'єктивів на частоті Найквіста.

Як випливає з [4], спотворення, що вносяться об'єктивом, який можна вважати як ідеальний, можуть бути практично виключені за рахунок відповідного його побудови [9-12] при тому, що реальний об'єктив може вносити значні спотворення (див. Рис. 13 і 14 в 4]).

Дані, наведені в таблиці 1, характеризують можливу варіацію спотворень, які можуть вноситися ідеальним об'єктивом для випадків широкої варіації параметрів об'єктива і розмірів матричного сенсора.

f	- 1 - 2	Угол поля зрения объектива, °	Сенсор		$V_{\rm max}$	MTF (V_N)			
у, ММ	D/f		Тип	Размер мм×мм	$TBЛ/h_{\phi}$	SD	HD	UHD 4K	UHD 8K
27	1:3.5	71	1/3″	4.8×3.6	3703	0.803	0.634	0.302	0.000
			1/2″	6.4×4.8	4937	0.852	0.724	0.461	0.052
			2/3″	8.8×6.6	6788	0.892	0.798	0.602	0.248
			Super 16	12.52×7.41	7621	0.904	0.820	0.644	0.319
			4/3″	17.8×10	10285	0.929	0.866	0.734	0.481
			APS-C	22.2×14.8	15222	0.951	0.910	0.820	0.634
			DX	23.6×15.5	15942	0.954	0.914	0.828	0.659
			Super 35	24.89×18.66	19192	0.962	0.928	0.857	0.716
			APS-H	28.7×19.1	19645	0.963	0.930	0.860	0.722
			35мм FF	36×24	24684	0.970	0.944	0.889	0.778
			65 мм	52.63×23.01	23666	0.969	0.942	0.884	0.769
37	1:2.8	58	1/3″	4.8×3.6	4603	0.841	0.704	0.425	0.018
			1/2″	6.4×4.8	6137	0.881	0.777	0.561	0.185
			2/3″	8.8×6.6	8438	0.913	0.837	0.678	0.378
			Super 16	12.52×7.41	9474	0.923	0.855	0.712	0.440
			4/3″	17.8×10	12785	0.943	0.893	0.786	0.578
			APS-C	22.2×14.8	18921	0.961	0.927	0.855	0.712
			DX	23.6×15.5	19816	0.963	0.931	0.861	0.725
			Super 35	24.89×18.66	23856	0.969	0.942	0.885	0.771
			APS-H	28.7×19.1	24419	0.970	0.944	0.888	0.776
			35мм FF	36×24	30683	0.976	0.955	0.910	0.821
			65 мм	52.63×23.01	29418	0.975	0.953	0.907	0.814

Таблиця 1 – Параметри об'єктивів та сенсорів камер та відповідні рівні ЧКХ на частоті Найквіста для систем SDTV, HDTV и UHDTV (4K, 8K)

f		Угол	Ce	нсор	V _{max}		MTF	(v_N)	
ј, ММ	D/f	поля зрения объектива, °	Тип	Размер мм×мм	$TBЛ/h_{\phi}$	SD	HD	UHD 4K	UHD 8K
50	1:2	44	1/3″	4.8×3.6	11709	0.937	0.883	0.766	0.541
			1/2″	6.4×4.8	15612	0.953	0.912	0.824	0.652
			2/3″	8.8×6.6	21466	0.966	0.936	0.872	0.746
			Super 16	12.52×7.41	24101	0.970	0.943	0.886	0773
			4/3″	17.8×10	32525	0.977	0.958	0.916	0.831
			APS-C	22.2×14.8	48136	0.985	0.971	0.943	0.856
			DX	23.6×15.5	50413	0.985	0.973	0.945	0.891
			Super 35	24.89×18.66	60691	0.988	0.977	0.955	0.909
			APS-H	28.7×19.1	62122	0.988	0.978	0.956	0.912
			35мм FF	36×24	78059	0.991	0.982	0.965	0.930
			65 мм	52.63×23.01	74839	0.990	0.982	0.963	0.927
85	1:1.5	27	1/3″	4.8×3.6	18513	0.960	0.926	0.852	0.706
			1/2″	6.4×4.8	24684	0.970	0.944	0.889	0.778
			2/3″	8.8×6.6	33941	0.978	0.959	0.919	0.838
			Super 16	12.52×7.41	38107	0.981	0.964	0.928	0.856
			4/3″	17.8×10	51426	0.986	0.973	0.947	0.893
			APS-C	22.2×14.8	76110	0.990	0.982	0.964	0.928
			DX	23.6×15.5	79710	0.991	0.983	0.966	0.931
			Super 35	24.89×18.66	95961	0.992	0.986	0.971	0.943
			APS-H	28.7×19.1	98224	0.993	0.986	0.972	0.944
			35мм FF	36×24	123422	0.994	0.989	0.978	0.955
			65 мм	52.63×23.01	118331	0.994	0.988	0.977	0.954
100	1:2	23	1/3″	4.8×3.6	8279	0.911	0.834	0.672	0.367
			1/2″	6.4×4.8	11039	0.934	0.876	0.752	0.515
			2/3″	8.8×6.6	15179	0.952	0.909	0.819	0.643
			Super 16	12.52×7.41	17042	0.957	0.919	0.839	0.681
			4/3″	17.8×10	22998	0.968	0.940	0.881	0.762
			APS-C	22.2×14.8	34038	0.978	0.960	0.919	0.839
			DX	23.6×15.5	35647	0.979	0.961	0.923	0.846
			Super 35	24.89×18.66	42915	0.983	0.968	0.936	0.872
			APS-H	28.7×19.1	43927	0.983	0.969	0.937	0.875
			35мм FF	36×24	55196	0.987	0.975	0.950	0.900
			65 мм	52.63×23.01	52919	0.986	0.974	0.948	0.896

Продовження таблиці 1									
f.	Угол		Ce	нсор	$V_{\rm max}$	$MTF(V_N)$			
MM	D/f	поля зрения объектива, °	Тип	Размер мм×мм	ТВЛ/ h_{ϕ}	SD	HD	UHD 4K	UHD 8K
135	1:3	17	1/3″	4.8×3.6	6350	0.885	0.785	0.575	0.206
			1/2″	6.4×4.8	8467	0.913	0.838	0.679	0.380
			2/3″	8.8×6.6	11642	0.937	0.882	0.765	0.539
			Super 16	12.52×7.41	13070	0.944	0.895	0.791	0.587
			4/3″	17.8×10	17639	0.958	0.922	0.844	0.691
			APS-C	22.2×14.8	26106	0.972	0.947	0.895	0.790
			DX	23.6×15.5	27340	0.973	0.950	0.900	0.800
			Super 35	24.89×18.66	32914	0.978	0.958	0.917	0.833
			APS-H	28.7×19.1	33690	0.978	0.959	0.918	0.837
			35мм FF	36×24	42333	0.983	0.968	0.935	0.870
			65 мм	52.63×23.01	40587	0.982	0.966	0.932	0.865
180	1:2.8	13	1/3″	4.8×3.6	4304	0.830	0.684	0.389	0.000
			1/2″	6.4×4.8	5739	0.872	0.762	0.532	0.142
			2/3″	8.8×6.6	7891	0.907	0.826	0.656	0.340
			Super 16	12.52×7.41	8860	0.917	0.845	0.693	0.405
			4/3″	17.8×10	11956	0.939	0.885	0.771	0.550
			APS-C	22.2×14.8	17695	0.959	0.922	0.845	0.692
			DX	23.6×15.5	18532	0.960	0.926	0.852	0.706
			Super 35	24.89×18.66	22310	0.967	0.938	0.877	0.755
			APS-H	28.7×19.1	22837	0.968	0.940	0.880	0.761
			35мм FF	36×24	28695	0.974	0.952	0.904	0.809
			65 мм	52.63×23.01	27511	0.973	0.950	0.900	0.801
210	1:3.5	10	1/3″	4.8×3.6	4603	0.841	0.704	0.425	0.018
			1/2″	6.4×4.8	6137	0.881	0.777	0.561	0.185
			2/3″	8.8×6.6	8438	0.913	0.837	0.678	0.378
			Super 16	12.52×7.41	9474	0.923	0.855	0.712	0.440
			4/3″	17.8×10	12785	0.943	0.893	0.786	0.578
			APS-C	22.2×14.8	18921	0.961	0.927	0.855	0.712
			DX	23.6×15.5	19816	0.963	0.931	0.861	0.725
			Super 35	24.89×18.66	23856	0.969	0.942	0.885	0.771
			APS-H	28.7×19.1	24419	0.970	0.944	0.888	0.776
			35мм FF	36×24	30683	0.976	0.955	0.910	0.821
			65 мм	52.63×23.01	29418	0.975	0.953	0.907	0.814

		Угол	Сен	cop			MTF	$V(v_N)$	
<i>f</i> , мм	D/f	зрения объектива, о	Тип	Размер мм×мм	$V_{\rm max}$ ТВЛ/ h_{ϕ}	SD	HD	UHD 4K	UHD 8K
300	1:4.5	7.5	1/3″	4.8×3.6	3703	0.803	0.634	0.302	0.000
			1/2″	6.4×4.8	4937	0.852	0.724	0.461	0.052
			2/3″	8.8×6.6	6788	0.892	0.798	0.602	0.248
			Super 16	12.52×7.41	7621	0.904	0.820	0.644	0.319
			4/3″	17.8×10	10285	0.929	0.867	0.735	0.481
			APS-C	22.2×14.8	15222	0.952	0.910	0.820	0.644
			DX	23.6×15.5	15942	0.954	0.914	0.828	0.659
			Super 35	24.89×18.66	19192	0.962	0.928	0.857	0.716
			APS-H	28.7×19.1	19645	0.963	0.930	0.860	0.722
			35мм FF	36×24	24684	0.970	0.944	0.889	0.778
			65 мм	52.63×23.01	23666	0.969	0.942	0.884	0.769
400	1:4.5	6	1/3″	4.8×3.6	2891	0.748	0.536	0.147	0.000
			1/2″	6.4×4.8	3855	0.810	0.648	0.326	0.000
			2/3″	8.8×6.6	5301	0.862	0.742	0.496	0.093
			Super 16	12.52×7.41	5951	0.877	0.770	0.548	0.165
			4/3″	17.8×10	8031	0.909	0.829	0.662	0.350
			APS-C	22.2×14.8	11886	0.938	0.884	0.770	0.548
			DX	23.6×15.5	12449	0.941	0.890	0.780	0.567
			Super 35	24.89×18.66	14987	0.951	0.908	0.817	0.638
			APS-H	28.7×19.1	15340	0.952	0.910	0.821	0.646
			35мм FF	36×24	19275	0.962	0.929	0.858	0.717
			65 мм	52.63×23.01	18480	0.960	0.926	0.852	0.705
500	1:5.6	5	1/3″	4.8×3.6	2891	0.748	0.536	0.147	0.000
			1/2″	6.4×4.8	3855	0.810	0.648	0.326	0.000
			2/3″	8.8×6.6	5301	0.862	0.742	0.496	0.093
			Super 16	12.52×7.41	5951	0.877	0.770	0.548	0.165
			4/3″	17.8×10	8031	0.909	0.829	0.662	0.350
			APS-C	22.2×14.8	11886	0.938	0.884	0.770	0.548
			DX	23.6×15.5	12449	0.941	0.890	0.780	0.567
			Super 35	24.89×18.66	14987	0.951	0.908	0.817	0.638
			APS-H	28.7×19.1	15340	0.952	0.910	0.821	0.646
			35мм FF	36×24	19275	0.962	0.929	0.858	0.717
			65 мм	52.63×23.01	18480	0.960	0.926	0.852	0.705

Продовження таблиці 1									
f		Угол	Сен	нсор	$V_{\rm max}$		MTF	(v_N)	
ј, мм	$\begin{array}{c} J \\ MM \end{array} D/f$	поля зрения объектива, °	Тип	Размер мм×мм	ТВЛ/ <i>h</i> _ф	SD	HD	UHD 4K	UHD 8K
750	1:6.3	3	1/3″	4.8×3.6	2328	0.688	0.431	0.023	0.000
	1		1/2″	6.4×4.8	3105	0.765	0.566	0.192	0.000
	1		2/3″	8.8×6.6	4269	0.829	0.681	0.384	0.000
	1		Super 16	12.52×7.41	4793	0.847	0.716	0.446	0.037
	1		4/3″	17.8×10	6468	0.887	0.788	0.583	0.218
	1		APS-C	22.2×14.8	9572	0.923	0.857	0.715	0.446
	1		DX	23.6×15.5	10025	0.927	0.863	0.728	0.469
	1		Super 35	24.89×18.66	12069	0.939	0.886	0.773	0.554
			APS-H	28.7×19.1	12353	0.941	0.889	0.779	0.564
	1		35мм FF	36×24	15523	0.951	0.911	0.823	0.650
			65 мм	52.63×23.01	14882	0.951	0.908	0.816	0.636
1000	1:8	2°20′	1/3″	4.8×3.6	2071	0.651	0.368	0.000	0.000
	1		1/2″	6.4×4.8	2762	0.736	0.515	0.118	0.000
	1		2/3″	8.8×6.6	3798	0.808	0.643	0.317	0.000
	1		Super 16	12.52×7.41	4264	0.829	0.681	0.384	0.000
	1		4/3″	17.8×10	5754	0.873	0.762	0.534	0.144
	1		APS-C	22.2×14.8	8516	0.914	0.839	0.681	0.323
	1		DX	23.6×15.5	8919	0.918	0.846	0.695	0.408
	1		Super 35	24.89×18.66	10737	0.932	0.872	0.746	0.502
	1		APS-H	28.7×19.1	10990	0.933	0.875	0.751	0.513
	l		35мм FF	36×24	13809	0.947	0.901	0.802	0.608
	1		65 мм	52.63×23.01	13240	0.945	0.896	0.793	0.592

З точки зору якості зображення рівні ЧКХ на частоті Найквіста, не були б критичними, якби спотворення вносив тільки об'єктив. Для SDTV спотворення, що вносяться об'єктивом, можна вважати незначними. Для HDTV вони можуть бути відчутними. Для UHDTV спотворення в ряді випадків можуть приймати неприпустимі значення.

Спотворення, що вносяться матричних сенсором, визначаються двома факторами - кінцевим розміром елемента матричного перетворювача "світло-сигнал" і похибкою, що вноситься ПЗСструктурою, яка використовується для розгортки зображення. Можна вважати, що дія другого чинника може бути мінімізована або повністю виключено за рахунок подальшого прогресу системи розгортки. Виходячи з цього, ЧКХ ідеального матричного сенсора може бути визначена як

$$K_{\text{sensor}}\left(v_{1}, v_{2}\right) = \operatorname{sinc}\left(\frac{\pi}{2} \frac{v_{1}}{z_{a}}\right) \cdot \operatorname{sinc}\left(\frac{\pi}{2} \frac{v_{2}}{z_{a}}\right).$$
(6)

З формули (6) випливає, що ЧКХ матричного сенсора не володіє круговою симетрією. Для діагональних напрямків спад ЧКХ буде більше, ніж для горизонтального і вертикального. Для $v_1, v_2 = z_a$, тобто на частоті Найквіста, ЧКХ для горизонтального і вертикального напрямків приймає

значення, яке дорівнює sinc $\left(\frac{\pi}{2}\right) = 0,63662$, а на частотах дискретизації $v_{1s}, v_{2s} = 2z_a$ приймає нульове значення. Очевидно, що спад ЧКХ всередині частотного інтервалу $\overline{0, z_a}$ с зростанням частоти є складовою, що робить внесок у зниження чіткості зображення на виході камери спільно з об'єктивом.

Спотворення, що вносяться цифровим електричним трактом передачі, практично визначаються ступенем стиснення зображення в цифровому кодеку і можуть призводити до зниження чіткості зображення при великому ступені стиснення. Оскільки процес стиснення є нелінійним, модель спотворень, описуваних ЧКХ $K_{\rm ETP}(v_1, v_2)$, може використовуватися з певною мірою умовності.

У даній роботі вихідними є спотворення, що вносяться ідеальним трактом передачі "від світла до світла", тобто мова йде про потенційно досяжному якості зображення, в даному випадку можна виходити з обмеженою ступеня стиснення і прийняти $K_{\text{ETP}}(v_1, v_2) = 1$, хоча цей фактор є предметом для подальших досліджень.

Спотворення, що вносяться відтворює пристроєм, визначаються структурою екрану, відповідно до якої кожному відліку відеосигналу відповідає квадратний елемент зображення, який відтворюється у вигляді світиться майданчики, тобто в ідеальному випадку, коли не вносяться додаткові спотворення, має місце відповідне розмиття зображення у вигляді двовимірної фільтрації з коефіцієнтом передачі, описуваної двовимірної ЧКХ, такий же, як для матричного перетворювача камери, тобто ЧКХ перетворювача "сигнал-світло" описується формулою:

$$K_{\rm disp}\left(\nu_1,\nu_2\right) = {\rm sinc}\left(\frac{\pi}{2}\frac{\nu_1}{z_a}\right) \cdot {\rm sinc}\left(\frac{\pi}{2}\frac{\nu_2}{z_a}\right). \tag{7}$$

Таким чином, просторова двовимірна ЧКХ об'єктива камери володіє круговою симетрією, а ЧКХ перетворювачів "світло-сигнал" і "сигнал-світло" визначається твором характеристик, для яких зниження чіткості по горизонталі і по вертикалі однаково, а для діагонального напрямку воно більше, що з точки зору суб'єктивної оцінки якості зображення узгоджується з анізотропією зорового сприйняття.

На рис. 1 - 18 представлені приклади наскрізних ЧКХ ТВ тракту "від світла до світла" для випадку, коли об'єктиву камери притаманні тільки дифракційні обмеження і цифровий тракт передачі зображення не вносить відчутних спотворень, параметри яких взяті з таблиці І.

З урахуванням даних [4] через спотворення, що вносяться реальними об'єктивами, а також спотворення, що виникають в реальному тракті передачі зі стисненням, можуть проявлятися в значно більшому ступені.

Рисунок 2 – Просторова КЧХ ідеального ТВ тракту «від світла до світла» для *D/f*=1:5.6, *h*_=18.55 мм

Рисунок 3 – Просторова КЧХ ідеального ТВ тракту «від світла до світла» для *D/f*=1:2, *h_s*=10 мм

Рисунок 5 – Просторова КЧХ ідеального ТВ тракту «віл світла ло світла» лля D/f=1:2. hs=23.01 мм

Рисунок 7 – Просторова КЧХ ідеального ТВ тракту «від світла до світла» для D/f=1:3, hs=18.55 мм

Рисунок 4 – Просторова КЧХ ідеального ТВ тракту «від світла до світла» для *D/f*=1:5.6, *h*_s=10 мм

Рисунок 6 – Просторова КЧХ ідеального ТВ тракту «віл світла ло світла» лля D/f=1:5.6. hs=23.01 мм

Рисунок 8 – Просторова КЧХ ідеального ТВ тракту «від світла до світла» для D/f=1:6, hs=18.55 мм

Рисунок 9 – Просторова КЧХ ідеального ТВ тракту «від світла до світла» для D/f=1:3, hs=10 мм

Рисунок 10 – Просторова КЧХ ідеального ТВ тракту «від світла до світла» для D/f=1:6, hs=10 мм

«від світла до світла» для D/f=1:3, hs=23.01 мм

«від світла до світла» для D/f=1:4.5, hs=18.55 мм

0.9 0.8 0.7 SDTV 0.6 MTF 0.5 HDTV 0.4 UHDTV 4K 03 0.2 UHDTV 0.1 0 0.2 01 0.3 0.5 0.6 0.8 0.4 0.7 0.9 Просторова частота, v, TVL

Рисунок 15 – Просторова КЧХ ідеального ТВ тракту «від світла до світла» для D/f=1:4.5, hs=10 мм

Рисунок 16 – Просторова КЧХ ідеального ТВ тракту «від світла до світла» для D/f=1:8, hs=10 мм

Рисунок 17 – Просторова КЧХ ідеального ТВ тракту Рисунок 18 – Просторова КЧХ ідеального ТВ тракту «від світла до світла» для D/f=1:4.5, hs=23.01 мм

Критерій чіткості, який оцінюється в двох вимірах. У практиці аналогового телебачення на протязі тривалого періоду часу використовувалася оцінка спотворень вздовж рядків розгортки, що виникають в результаті мінімальних спотворень в електричному тракті передачі сигналу. Одним з критеріїв такої оцінки іноді використовувалася площа під частотно-контрастною характеристикою ТВ системи "від світла до світла" в межах стандартної смуги частот відеосигналу, що характеризує середній рівень ЧКХ по горизонталі.

У разі оцінки спотворень по двовимірної ЧКХ відповідною мірою чіткості зображення може служити обсяг Q простору під двовимірної ЧКХ $K_{lens}(v_1, v_2)$ для області частот в межах $v_1 \le v_{1N}, v_2 \le v_{2N}$, де v_{1N} , v_{2N} - частоти Найквіста для горизонтального і вертикального напрямків.

У таблиці 2 наведені приклади оцінок критеріїв досяжною чіткості для ТВ систем різних рівнів для випадків, коли мінімально можливі лінійні спотворення не піддавалися корекції.

Слід зазначити, що в сучасних система, в яких джерелом відеосигналу є матричний сенсор, немає можливості реалізувати низькочастотну передфільтрації і сінк-корекцію. В даному випадку роль НЧ передфільтрації певною мірою грають розглянуті види спотворень, що вносяться об'єктивом і сенсором на частоті Найквіста і близьких до неї частот.

Тому компенсація спотворень для підвищення чіткості зображення може бути здійснена за допомогою коректора, що не який піднімає рівень ЧКХ на частотах v_1 і v_2 .

Система	$D/f = 1:2, h_s = 10$ MM	$D/f = 1:2, h_s = 18.55$ MM	$D/f = 1:2, h_s = 23.01$ MM					
	-	Камера						
SDTV	0.7387	0.7492	0.7515					
HDTV	0.7190	0.7387	0.7430					
UHDTV 4K	0.6768	0.7160	0.7246					
UHDTV 8K	0.5931	0.6708	0.6879					
	Тракт «	від світла до світла»						
SDTV	0.5818	0.5895	0.5912					
HDTV	0.5674	0.5818	0.5850					
UHDTV 4K	0.5364	0.5652	0.5715					
UHDTV 8K	0.4749	0.5320	0.5445					
Система	$D/f = 1:5.6, h_s = 10$ MM	$D/f = 1:5.6, h_s = 18.55$ MM	$D/f = 1:5.6, h_s = 23.01$ MM					
Камера								
SDTV	0.6997	0.7283	0.7346					
HDTV	0.6461	0.6995	0.7112					
UHDTV 4K	0.5333	0.6380	0.6612					
UHDTV 8K	0.3264	0.5175	0.5625					
	Тракт «	від світла до світла»						
SDTV	0.5532	0.5742	0.5787					
HDTV	0.5139	0.5530	0.5616					
UHDTV 4K	0.4309	0.5079	0.5249					
UHDTV 8K	0.2773	0.4192	0.4524					
Система	$D/f = 1:3, h_s = 10$ мм	$D/f = 1:3, h_s = 18.55$ MM	$D/f = 1:3, h_s = 23.01$ мм					
		Камера						
SDTV	0.7280	0.7434	0.7469					
HDTV	0.6989	0.7277	0.7342					
UHDTV 4K	0.6368	0.6941	0.7071					
UHDTV 8K	0.5153	0.6272	0.6530					
	Тракт «	від світла до світла»						
SDTV	0.5739	0.5852	0.5878					
HDTV	0.5526	0.5737	0.5785					
UHDTV 4K	0.5070	0.5491	0.5587					
UHDTV 8K	0.4176	0.4999	0.5189					
Система	$D/f = 1:6, h_s = 10$ MM	$D/f = 1:6, h_s = 18.55$ MM	$D/f = 1:6, h_s = 23.01$ MM					
		Камера						
SDTV	0.6954	0.7258	0.7327					
HDTV	0.6380	0.6947	0.7076					
UHDTV 4K	0.5177	0.6285	0.6541					
UHDTV 8K	0.3005	0.4994	0.5487					
	Тракт «	від світла до світла»						
SDTV	0.5500	0.5723	0.5773					
HDTV	0.5079	0.5495	0.5590					
UHDTV 4K	0.4193	0.5009	0.5197					
UHDTV 8K	0.2577	0.4058	0.4422					

Таблиця 2 – Параметри оцінок критеріїв досяжної чіткості Q

Система	$D/f = 1: 4.5, h_s = 10$ мм	$D/f = 1:4.5, h_s = 18.55$ MM	$D/f = 1: 4.5, h_s = 23.01$ MM
		Камера	
SDTV	0.7117	0.7946	0.7398
HDTV	0.6685	0.7112	0.7210
UHDTV 4K	0.5768	0.6613	0.6806
UHDTV 8K	0.4028	0.5627	0.6006
	Тракт «	від світла до світла»	
SDTV	0.5620	0.5788	0.5826
HDTV	0.5303	0.5617	0.5688
UHDTV 4K	0.4629	0.5250	0.5392
UHDTV 8K	0.3343	0.4525	0.4804
Система	$D/f = 1:8, h_s = 10$ MM	$D/f = 1:8, h_s = 18.55$ MM	$D/f = 1:8, h_s = 23.01$ MM
		Камера	
SDTV	0.6736	0.7140	0.7231
HDTV	0.5977	0.6727	0.6898
UHDTV 4K	0.4412	0.5851	0.6189
UHDTV 8K	0.1935	0.4180	0.4810
	Тракт «	від світла до світла»	
SDTV	0.5340	0.5636	0.5704
HDTV	0.4782	0.5334	0.5460
UHDTV 4K	0.3628	0.4690	0.4938
UHDTV 8K	0.1745	0.3456	0.3923
Система	$D/f = 1: 3.5, h_s = 10$ мм	$D/f = 1:3.5, h_s = 18.55$ MM	$D/f = 1:3.5, h_s = 23.01$ MM
		Камера	
		Rumopu	
SDTV	0.7226	0.7404	0.7445
SDTV HDTV	0.7226 0.6888	0.7404 0.7222	0.7445 0.7298
SDTV HDTV UHDTV 4K	0.7226 0.6888 0.6168	0.7404 0.7222 0.6832	0.7445 0.7298 0.6983
SDTV HDTV UHDTV 4K UHDTV 8K	0.7226 0.6888 0.6168 0.4770	0.7404 0.7222 0.6832 0.6056	0.7445 0.7298 0.6983 0.6355
SDTV HDTV UHDTV 4K UHDTV 8K	0.7226 0.6888 0.6168 0.4770 Тракт «	0.7404 0.7222 0.6832 0.6056 квід світла до світла»	0.7445 0.7298 0.6983 0.6355
SDTV HDTV UHDTV 4K UHDTV 8K SDTV	0.7226 0.6888 0.6168 0.4770 Тракт « 0.5700	0.7404 0.7222 0.6832 0.6056 квід світла до світла» 0.5831	0.7445 0.7298 0.6983 0.6355 0.5860
SDTV HDTV UHDTV 4K UHDTV 8K SDTV HDTV	0.7226 0.6888 0.6168 0.4770 Тракт « 0.5700 0.5452	0.7404 0.7222 0.6832 0.6056 квід світла до світла» 0.5831 0.5697	0.7445 0.7298 0.6983 0.6355 0.5860 0.5753
SDTV HDTV UHDTV 4K UHDTV 8K SDTV HDTV UHDTV 4K	0.7226 0.6888 0.6168 0.4770 Тракт « 0.5700 0.5452 0.4923	0.7404 0.7222 0.6832 0.6056 (від світла до світла» 0.5831 0.5697 0.5411	0.7445 0.7298 0.6983 0.6355 0.5860 0.5753 0.5522
SDTV HDTV 4K UHDTV 4K UHDTV 8K SDTV HDTV UHDTV 4K UHDTV 8K	0.7226 0.6888 0.6168 0.4770 Тракт « 0.5700 0.5452 0.4923 0.3893	0.7404 0.7222 0.6832 0.6056 Свід світла до світла» 0.5831 0.5697 0.5411 0.4841	0.7445 0.7298 0.6983 0.6355 0.5860 0.5753 0.5522 0.5061
SDTV HDTV 4K UHDTV 4K UHDTV 8K SDTV HDTV UHDTV 4K UHDTV 8K Cистема	0.7226 0.6888 0.6168 0.4770 Тракт « 0.5700 0.5452 0.4923 0.3893 D/f =1:2.8, h _s =10 мм	0.7404 0.7222 0.6832 0.6056 звід світла до світла» 0.5831 0.5697 0.5411 0.4841	0.7445 0.7298 0.6983 0.6355 0.5860 0.5753 0.5522 0.5061 D/f =1:2.8, h _s = 23.01 мм
SDTV HDTV 4K UHDTV 4K UHDTV 8K SDTV HDTV UHDTV 4K UHDTV 8K Cистема	0.7226 0.6888 0.6168 0.4770 Тракт « 0.5700 0.5452 0.4923 0.3893 D/f =1:2.8, h _s =10 мм	0.7404 0.7222 0.6832 0.6056 квід світла до світла» 0.5831 0.5697 0.5411 0.4841 $D/f = 1: 2.8, h_s = 18.55$ мм Камера	0.7445 0.7298 0.6983 0.6355 0.5860 0.5753 0.5522 0.5061 D/f =1:2.8, h _s = 23.01 мм
SDTV HDTV 4K UHDTV 4K UHDTV 8K SDTV HDTV 4K UHDTV 4K UHDTV 8K Cucrema	0.7226 0.6888 0.6168 0.4770 Тракт « 0.5700 0.5452 0.4923 0.3893 D/f =1:2.8, h _s =10 мм	0.7404 0.7222 0.6832 0.6056 авід світла до світла» 0.5831 0.5697 0.5411 0.4841 $D/f = 1: 2.8, h_s = 18.55$ мм Камера 0.7445	0.7445 0.7298 0.6983 0.6355 0.5860 0.5753 0.5522 0.5061 D/f =1:2.8, h _s = 23.01 мм
SDTV HDTV 4K UHDTV 4K UHDTV 8K SDTV HDTV UHDTV 4K UHDTV 8K Cистема SDTV HDTV	0.7226 0.6888 0.6168 0.4770 Тракт « 0.5700 0.5452 0.4923 0.3893 D/f =1:2.8, h _s =10 мм	0.7404 0.7222 0.6832 0.6056 звід світла до світла» 0.5831 0.5697 0.5411 0.4841 $D/f = 1: 2.8, h_s = 18.55$ мм Камера 0.7445 0.7299	0.7445 0.7298 0.6983 0.6355 0.5552 0.5522 0.5061 D/f =1:2.8, h _s = 23.01 мм
SDTV HDTV 4K UHDTV 4K UHDTV 8K SDTV HDTV 4K UHDTV 4K UHDTV 8K Cucrema SDTV HDTV HDTV 4K	0.7226 0.6888 0.6168 0.4770 Тракт « 0.5700 0.5452 0.4923 0.3893 D/f =1:2.8, h _s =10 мм 0.7302 0.7030 0.6448	0.7404 0.7222 0.6832 0.6056 звід світла до світла» 0.5831 0.5697 0.5411 0.4841 $D/f = 1: 2.8, h_s = 18.55$ мм Камера 0.7445 0.7299 0.6984	0.7445 0.7298 0.6983 0.6355 0.5860 0.5753 0.5522 0.5061 <i>D/f</i> =1:2.8, <i>h</i> _s = 23.01 мм
SDTV HDTV 4K UHDTV 4K UHDTV 8K SDTV HDTV 4K UHDTV 4K UHDTV 8K Cucrema SDTV HDTV UHDTV 4K UHDTV 4K UHDTV 4K	0.7226 0.6888 0.6168 0.4770 Тракт « 0.5700 0.5452 0.4923 0.3893 D/f =1:2.8, h _s =10 мм 0.7302 0.7030 0.6448 0.5308	0.7404 0.7222 0.6832 0.6056 авід світла до світла» 0.5831 0.5697 0.5411 0.4841 $D/f = 1:2.8, h_s = 18.55$ мм Камера 0.7445 0.7299 0.6984 0.6358	$\begin{array}{c} 0.7445\\ 0.7298\\ 0.6983\\ 0.6355\\ \hline \\ \end{array}$
SDTV HDTV 4K UHDTV 4K UHDTV 8K SDTV HDTV 4K UHDTV 4K UHDTV 8K Cucrema SDTV HDTV UHDTV 4K UHDTV 4K UHDTV 8K	0.7226 0.6888 0.6168 0.4770 Тракт « 0.5700 0.5452 0.4923 0.3893 D/f =1:2.8, h _s =10 мм 0.7302 0.7030 0.6448 0.5308 Тракт «	0.7404 0.7222 0.6832 0.6056 звід світла до світла» 0.5831 0.5697 0.5411 0.4841 $D/f = 1: 2.8, h_s = 18.55$ мм Камера 0.7445 0.7299 0.6984 0.6358 світла до світла»	0.7445 0.7298 0.6983 0.6355 0.5860 0.5753 0.5522 0.5061 D/f =1:2.8, h_s = 23.01 мм 0.7478 0.7360 0.7106 0.6600
SDTV HDTV 4K UHDTV 4K UHDTV 8K SDTV HDTV 4K UHDTV 4K UHDTV 8K Cucrema SDTV HDTV UHDTV 4K UHDTV 4K UHDTV 4K UHDTV 8K	0.7226 0.6888 0.6168 0.4770 Тракт « 0.5700 0.5452 0.4923 0.3893 $D/f = 1: 2.8, h_s = 10$ мм 0.7302 0.7030 0.6448 0.5308 Тракт « 0.5755	0.7404 0.7222 0.6832 0.6056 від світла до світла» 0.5831 0.5697 0.5411 0.4841 $D/f = 1:2.8, h_s = 18.55$ мм Камера 0.7299 0.6984 0.6358 світла до світла» 0.5861	$\begin{array}{c} 0.7445\\ 0.7298\\ 0.6983\\ 0.6355\\ \hline \\ \end{array}$
SDTV HDTV 4K UHDTV 4K UHDTV 8K SDTV HDTV UHDTV 4K UHDTV 8K Cuctema SDTV HDTV UHDTV 4K UHDTV 4K UHDTV 4K UHDTV 8K	0.7226 0.6888 0.6168 0.4770 Тракт « 0.5700 0.5452 0.4923 0.3893 <i>D/f</i> =1:2.8, <i>h</i> _s =10 мм 0.7302 0.7030 0.6448 0.5308 Тракт « 0.5755 0.5556	0.7404 0.7222 0.6832 0.6056 звід світла до світла» 0.5831 0.5697 0.5411 0.4841 $D/f = 1: 2.8, h_s = 18.55$ мм Камера 0.7299 0.6984 0.6358 світла до світла» 0.5861 0.5754	$\begin{array}{c} 0.7445\\ 0.7298\\ 0.6983\\ 0.6355\\ \hline \\ 0.5860\\ 0.5753\\ 0.5522\\ 0.5061\\ \hline D/f=1:2.8,\ h_s=23.01\ {\rm MM}\\ \hline \\ 0.7478\\ 0.7360\\ 0.7106\\ 0.6600\\ \hline \\ 0.5885\\ 0.5798\\ \hline \end{array}$
SDTV HDTV 4K UHDTV 4K UHDTV 8K SDTV HDTV UHDTV 4K UHDTV 8K CHCTEMA SDTV HDTV UHDTV 4K UHDTV 4K UHDTV 8K	0.7226 0.6888 0.6168 0.4770 Тракт « 0.5700 0.5452 0.4923 0.3893 D/f =1:2.8, h _s =10 мм 0.7302 0.7030 0.6448 0.5308 Тракт « 0.5755 0.5556 0.5556 0.5129	0.7404 0.7222 0.6832 0.6056 від світла до світла» 0.5831 0.5697 0.5411 0.4841 $D/f = 1: 2.8, h_s = 18.55$ мм Камера 0.7445 0.7299 0.6984 0.6358 світла до світла» 0.5861 0.5754 0.5523	0.7445 0.7298 0.6983 0.6355 0.5860 0.5753 0.5522 0.5061 <i>D/f</i> =1:2.8, <i>h</i> _s = 23.01 мм 0.7478 0.7360 0.7106 0.6600 0.5885 0.5798 0.5612

Система	$D/f = 1:1.15, h_s = 10$ MM	$D/f = 1:1.15, h_s = 18.55$ MM	$D/f = 1:1.15, h_s = 23.01$ MM					
		Камера						
SDTV	0.7476	0.7539	0.7554					
HDTV	0.7356	0.7475	0.7502					
UHDTV 4K	0.7099	0.7337	0.7391					
UHDTV 8K	0.6586	0.7059	0.7167					
Тракт «від світла до світла»								
SDTV	0.5883	0.5930	0.5940					
HDTV	0.5796	0.5883	0.5903					
UHDTV 4K	0.5607	0.5781	0.5821					
UHDTV 8K	0.5230	0.5578	0.5657					
Система	$D/f = 1:6.3, h_s = 10$ MM	$D/f = 1:6.3, h_s = 18.55$ MM	$D/f = 1:6.3, h_s = 23.01$ MM					
		Камера						
SDTV	0.6921	0.7240	0.7312					
HDTV	0.6320	0.6914	0.7050					
UHDTV 4K	0.5060	0.6220	0.6488					
UHDTV 8K	0.2818	0.4869	0.5385					
	Тракт «від світла до світла»							
SDTV	0.5476	0.5710	0.5763					
HDTV	0.5034	0.5471	0.5571					
UHDTV 4K	0.4107	0.4961	0.5158					
UHDTV 8K	0.2435	0.3966	0.4347					

Корекція частотно-контрастної характеристики. Описані вище види спотворень можуть бути компенсовані за допомогою двовимірної лінійної фільтрації.

При класичному уявленні корекція може здійснюватися за алгоритмом:

$$s^{*}(\nu_{1},\nu_{2}) = \text{FFT}_{N_{1},N_{2}}^{-1} \left\{ FFT_{N_{1},N_{2}} \left[s(\xi_{1},\xi_{2}) \right] / K_{\Sigma}(\nu_{1},\nu_{2}) \right\},$$
(8)

де $N_1 = z_a$, $N_2 = N_a - posmipu масивів відліків відеосигналу по горизонталі та по вертикалі, де <math>N_a -$ число відліків відеосигналу, які припадають на строку розгортки, та його частотного спектру, $\xi_1, \xi_2 -$ геометричні координати відліків зображення.

Але в разі вимірювання просторових частот v_1 і v_2 числом напівперіодів, що припадають на відстань, рівну висоті кадру, вихідне зображення являв собою матрицю розміру $z_a \cdot N_a$, а розмір матриці відліків частотного спектра повинен бути $2z_a \cdot 2N_a$. Слід зазначити властивість дискретного перетворення Фур'є, що складається в тому, що розмір матриці яка перетворюється повинен збігатися з розміром матриці відліків Фур'є-образу. Це означає, що алгоритм корекції повинен бути більш складним, а саме матриця відліків перетворюється зображення повинна бути розширена до розміру $2z_a \cdot 2N_a$. Для цього пропонується реалізувати розширення матриці відліків перетворюється за допомогою описаних нижче алгоритму дзеркального відображення за допомогою функції *mirroring* і її перетворення за допомогою функції *shift*. Ці дві функції можуть бути реалізовані в такий спосіб:

Функція *mirroring* реалізує алгоритм дзеркального відображення матриці відліків $[s_1(\xi_1,\xi_2)]$ розміру $z_a \cdot N_a$ на матрицю $[s_2(\xi_1,\xi_2)]$ розміру $2z_a \cdot 2N_a$ наступним чином:

$$\left[s_{2}\left(\xi_{1},\xi_{2}\right)\right]_{\xi_{1}\in\overline{0;2z_{a}-l}} = \operatorname{mirroring}\left\{\left[s_{1}\left(\xi_{1},\xi_{2}\right)\right]_{\xi_{1}\in\overline{0;z_{a}-l}}_{\xi_{2}\in\overline{0;N_{a}-l}}\right\}.$$
(9)

Таке відображення може бути реалізовано наступним чином:

$$\left[s_{2}(\xi_{1},\xi_{2})\right]_{\xi_{1}\in\overline{0;\,z_{a}-1}} = \left[s_{1}(\xi_{1},\xi_{2})\right]_{\xi_{1}\in\overline{0;\,z_{a}-1}}_{\xi_{2}\in\overline{0;\,N_{a}-1}},$$
(10)

$$\left[s_{2}\left(2z_{a}-\xi_{1},\xi_{2}\right)\right]_{\xi_{1}\in\overline{I};z_{a}-1}=\left[s_{2}\left(\xi_{1},\xi_{2}\right)\right]_{\xi_{1}\in\overline{I};z_{a}-1},$$

$$(11)$$

$$\left[s_{2}\left(\xi_{1},2N_{a}-\xi_{2}\right)\right]_{\xi_{1}\in\overline{0;\,2z_{a}-1}}=\left[s_{2}\left(\xi_{1},\xi_{2}\right)\right]_{\xi_{1}\in\overline{0;\,2z_{a}-1}}.$$
(12)

Це перетворення може здійснюватися як в сигнальному просторі, так і в спектральному.

Функція shift описує алгоритм реорганізації матриці таким чином, що відлік з номером (0,0) переноситься в точку з номером $(z_a - 1, N_a - 1)$ з тим, що в новій перетвореної матриці розміру $2z_a \cdot 2N_a$ він займає центральне положення, від якого зручно відраховувати координати сигналу і його спектра, а також частотно-контрастної характеристики. Алгоритм shift можна представити в наступному вигляді

for
$$\xi_1 \in \overline{0, 2z_a - 1}$$

for $\xi_2 \in \overline{0, N_a - 1}$
 $u = s(\xi_1, \xi_2)$
 $s(\xi_1, \xi_2) = s(\xi_1, \xi_2 + N_a)$
 $s(\xi_1, \xi_2 + N_a) = u$
end

end

for
$$\xi_2 \in \overline{0, 2N_a - 1}$$

for $\xi_1 \in \overline{0, z_a - 1}$
 $u = s(\xi_1, \xi_2)$
 $s(\xi_1, \xi_2) = s(\xi_1 + z_a, \xi_2)$
 $s(\xi_1 + z_a, \xi_2) = u$
end

end

Зворотне перетворення реалізується за цим же алгоритмом. Функція *shift* тут представлена в термінах розглянутих перетворень. В принципі вона аналогічна реалізованої в системі MATLAB.

З урахуванням введених перетворень алгоритм корекції може бути реалізований в наступному вигляді:

$$\left[s_{1}\left(\xi_{1},\xi_{2}\right)\right]_{\xi_{1}\in\overline{0;\,2z_{a}-1}} = \operatorname{mirroring}\left\{\left[s\left(\xi_{1},\xi_{2}\right)\right]_{\xi_{1}\in\overline{0;\,z_{a}-1}}_{\xi_{2}\in\overline{0;\,N_{a}-1}}\right\},\tag{13}$$

$$\left[s_{2}(\nu_{1},\nu_{2})\right]_{\nu_{1}\in\overline{0;\,2\mathbf{X}_{a}-1}} = \operatorname{FFT}_{2z_{a},2N_{a}}\left\{\left[s_{1}(\xi_{1},\xi_{2})\right]_{\xi_{1}\in\overline{0;\,2\mathbf{X}_{a}-1}}\right\},\tag{14}$$

$$\left[s_{3}(\nu_{1},\nu_{2})\right]_{\nu_{2}\in\overline{0;2z_{a}-l}} = \operatorname{shift}\left\{\left[s_{2}(\nu_{1},\nu_{2})\right]_{\nu_{2}\in\overline{0;2x_{a}-l}}\right\},\tag{15}$$

$$\left[s_{4}(\nu_{1},\nu_{2})\right]_{\nu_{1}\in\overline{0;\,2\mathbf{x}_{a}-1}}=\left[s_{3}(\nu_{1},\nu_{2})K_{cor}(\nu_{1}-z_{a},\nu_{2}-N_{a})\right]_{\nu_{1}\in\overline{0;\,2\mathbf{x}_{a}-1}},$$
(16)

$$\left[s_{5}(\nu_{1},\nu_{2})\right]_{\nu_{1}\in\overline{0;\,2z_{a}-1}} = \operatorname{shift}\left\{\left[s_{4}(\nu_{1},\nu_{2})\right]_{\nu_{2}\in\overline{0;\,2z_{a}-1}}_{\nu_{2}\in\overline{0;\,2N_{a}-1}}\right\},\tag{17}$$

61

$$\left[s_{6}\left(\xi_{1},\xi_{2}\right)\right]_{\xi_{1}\in\overline{0;2z_{a}-1}} = \operatorname{FFT}_{2z_{a},2N_{a}}^{-1} \left\{\left[s_{5}\left(\nu_{1},\nu_{2}\right)\right]_{\nu_{1}\in\overline{0;2z_{a}-1}}_{\nu_{2}\in\overline{0;2N_{a}-1}}\right\},\tag{18}$$

$$\left[s^{*}(\xi_{1},\xi_{2})\right]_{\xi_{1}\in\overline{0;\,z_{a}-1}}=\left[s_{5}(v_{1},v_{2})\right]_{v_{1}\in\overline{0;\,z_{a}-1}}.$$

$$(19)$$

Висновки. У статті наведено аналіз і дана оцінка чіткості зображення, досяжною в ТВ системах і родинних додатках з урахуванням дифракційних обмежень в об'єктиві камери та розмиття зображення через кінцевих розмірів перетворюють елементів камери і відтворює дисплея.

В основу аналізу та оцінки покладено використання двовимірної ЧКХ, яка визначена в межах діапазону просторових частот по горизонталі і по вертикалі, обмеженого частотами Найквиста.

Для цифрових відеосистем визначено, що в системі з числом активних строк розгортки z_a і квадратним елементом зображення просторова частота дискретизації зображення, що обчислюється числом напівперіодів зміни яскравості, що припадають на висоту кадру, дорівнює $2z_a$ і частота Найквіста по горизонталі і по вертикалі дорівнює z_a .

Дана оцінка неоднорідності камери для можливих параметрів об'єктива і розміру сенсора і показано, наскільки нерівномірність, що забезпечується рівнем ЧКХ на частоті Найквіста для будьякого напрямку на зображенні, може змінюватися. Як показують оцінки, наведені в таблиці І, нерівномірність може бути значною, особливо для систем UHDTV 4K і UHDTV 8K.

Дана оцінка результуючих спотворень, що виникають в ТВ тракті від світла до світла (таблиця 2).

Запропоновано алгоритм, який може бути покладений в основу побудови коректора спотворень в двох вимірах. Коректор повинен будуватися так, щоб спотворення були скориговані, наскільки це досяжно за умови, що рівень ЧКХ на частоті Найквіста не піднімається, щоб уникнути збільшення перешкоди дискретизації.

Слід мати на увазі, що в сучасних цифрових відеосистемах, таких як системи HDTV і UHDTV, в яких при сучасному побудові камери має місце двовимірна дискретизація зображення безпосередньо в матричному сенсорі, неможливо використовувати передфільтр, і тому придушення перешкоди дискретизації досягається тільки за рахунок розмиття в об'єктиві і кінцевих розмірів перетворює елемента сенсора. Тому коректор може бути побудований, наприклад, у вигляді сінккоректора в комбінації з НЧ фільтром, що має спад ПЧКЧ від рівня 1 до рівня 0 на інтервалі 0.8-1.2 частоти Найквіста по горизонталі і по вертикалі.

ЛІТЕРАТУРА

- N. Bychkov. "O vliyanii chastotno-kontrastnoy kharakteristiki obyektiva i spektralnogo sostava istochnika izlucheniya na razreshayushchuyu sposobnost televizionnogo datchika". Izvestiya vuzov. Priborostroyeniye. T. 51. 2008. № 5. s. 52-55 (A. N. Bychkov, "On the influence modulation transfer function of the lens and radiation source spectral composition on the resolution of the television sensor", News of Higher Educational Institutions. Instrument Engineering, vol. 51, 2008, No. 5, p. 52– 55)
- "How to Measure MTF and other Properties of Lenses", Optikos Corporation, Wakefield, MA 01880 USA, July 16, 1999, 64 p. https://www.optikos.com/wp-content/uploads/2015/10/How-to-Measure-MTF-and-other-Properties-of-Lenses.pdf
- 3. M. N. Sokolskiy, "Dopuski i kachestvo opticheskogo izobrazheniya", Leningrad: Mashinostroenie. Leningradskoe otdelenie, 1989, 221 s. (M. N. Sokolsky, "Tolerances and quality of the optical image", Leningrad: Mechanical Engineering. Leningrad Branch, 1989, 221 pp.), ISBN 5-217-00547-5
- 4. Ryuji Nurishi, Tsuyoshi Wakazono, and Fumiaki Usui "Cine-servo lens technology for 4K broadcast and cinematography", Proc. SPIE 9580, Zoom Lenses V, 95800F (3 September 2015); https://doi.org/10.1117/12.2188841
- D.S Volosov, "Fotograficheskaya optika (Teoriya, osnovy proektirovaniya, opticheskie harakteristiki)". Uchebnoe posobie dlya kinovuzov, 2-e izd. M.: Iskusstvo, 1978 – 543 s. (D.S. Volosov "Photographic optics (Theory, design fundamentals, optical characteristics)". Study guide for cinema universities, 2nd ed. M.: Iskusstvo, 1978 – 543 p.)
- 6. https://www.fujifilm.eu/ru/produkty/opticheskie-ustroistva/televizionnye-ob'ektivy

- 7. https://www.fujifilm.eu/ru/produkty/opticheskie-ustroistva/u-hdtv-lenses
- 8. http://s-pro.tv/equipment/catalogue.php?SECTION_ID=1727
- 9. Tsuyoshi Wakazono, Tomoyuki Nakamura, Kazuya Shimomura, Yu Inomoto "Zoom lens and image pickup apparatus including the same" (in Japanese) Patent No: JP2015-94867A
- 10. Kazuya Shimomura, Tomoyuki Nakamura, Yu Inomoto, Tsuyoshi Wakazono, "Zoom lens and image pickup apparatus including the same" (in Japanese) Patent No: JP2015-94864A
- 11. Wakazono, "Zoom lens and image pickup apparatus including the same" (in Japanese) Patent No: JP2015-94865A
- 12. Yu Inomoto, Tsuyoshi Wakazono, Tomoyuki Nakamura, Kazuya Shimomura, "Zoom lens and image pickup apparatus including the same" (in Japanese) Patent No: JP2015-94866A
- 13. O.Gofaizen, O.Osharovska, S.Kiiko, M.Patlayenko, V.Pyliavskyi, V.Solodka. "Potentially Achievable Image Definition" in Video Applications in International Conference Problems of Infocommunications. Science and Technology (PIC S&T). 6-9 october, 2020.