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Abstract. A schedule ensuring the exactly minimal total weighted tardiness can be found with the respective
integer linear programming problem. An open question is whether the exact schedule computation time changes if the
job release dates are input to the model in reverse order. The goal is to ascertain whether the job order in tight-tardy
progressive single machine scheduling with idling-free preemptions influences the speed of computing the exact
solution. The jobs can have both different lengths and different priority weights. The Boolean linear programming
model provided for finding schedules with the minimal total weighted tardiness is used. To achieve the said goal, a
computational study is carried out with a purpose to estimate the averaged computation time for both ascending and
descending orders of job release dates. Then the relative difference between the computation times is to be estimated
and treated. The job order influences the speed of computing the exact solution but it is hardly possible to predict it.
The matter is that the jobs can have both different lengths and different priority weights, that additionally “dithers” the
respective job order input leaving only release dates which are always given in that order. It has been revealed that
scheduling 3 or 4 jobs is executed on average faster by the descending job order input. However, the expected
acceleration by the descending job order input cannot be estimated with a great confidence factor. This result disproves
a possibility to manipulate the job order for obtaining schedules more efficiently in a single job scheduling problem or
in a few such problems. Only if the job scheduling problems by 3 or 4 jobs resemble the descending job order input, and
there are thousands of such problems, then it is recommended to use that job order input. Inputting jobs efficiently by
the descending job order style is still possible when different job lengths and different priority weights are both
scattered not much, that would be closer to the case of total tardiness by equal job lengths and equal priority weights.
This case is the most promising one, where the descending job order computation time can be shorter up to 10 % and
more in scheduling 2 to 6 jobs divided into two to four or even five parts each.

Keywords: job scheduling; preemptive single machine scheduling; exact model; total weighted tardiness;
computation time; ascending job order; descending job order.

Anomayin. Po3xnao, wo 3abe3neuye cmpozo MiHiMalbHe 3a2aibHe 36a)CeHe 3aNi3HI08AHHS, MOJICHA 3HAUMU
3@ 8I0NOBIOHOIO YINOUUCTIOBOIO 3A0aUer0 JHINIHO20 NPOSPAMY8AHHA. BiOkpumum € numants npo me, yu 3MIHIOEMbCA 4ac
00YUCTIEHHA MOYHO20 PO3KAAOY, AKWO 0amu 3anycKy 3a80aHb 6800AMbCA Y MOOelb Y 360POMHOMY NOpsOKY. Mema
nojsiedae y momy, wob 6CmaHo8umu, 4y 6NIUBAE HA WBUOKICMb OOYUCTIEHHA MOYHO20 PO38 A3KY NOPAOOK 3A80aHb )
WINLHOMY NPOSPECYIOUOMY OOHOMAUWUKHOMY NAAHYEAHHI 3 NEPEMUKAHHAMU Oe3 npocmoio. 3a80anHs MOJCYymMb Mamu
Ppi3Hi 06 emu ma pizui 8acu npiopumemis. /s nowtyKy po3xiadis 3 MiHIMAIbHUM 3A2aTbHUM 36AICEHUM 3ANI3HIOBAHHAM
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BUKOPUCIOBYEMBCS MOOENb 0YIe8020 NIHIUHO20 NpocpaMYSanus. [ OOCASHEHHS 3A3HAYEHOI Memu NpoBoOUmMbCs
004UCTIIOBANIbHE OOCTIONCEHHS 3 MEMOI OYIHKU YCepeOHeH020 4acy 0OUUCIeHHS K O BUCXIOH020 NOPSIOKY, MAK i OJis
CnAaoHo2o nopsioKy oam 3anycky 3ae0aHv. Jlani 6IOHOCHA pI3HUYs MidC uacamu OOYUCNeHb Mae Oymu OyiHeHa U
onpayvosana. Ilopsioox 3aedanb 6NIUGAE HA WEUOKICMb OOUYUCTIEHHS MOYHO20 PO36’S3KY, ale ye Haspsio Yu €
npoeno308anum. IIpuuuHow ybo2o € me, w0 3a60AHHA MOXCYMb Mamu pi3Hi 06 emu ma pisHi 6acu npiopumemis, wo
0ooamkoso “pozmusac” GiONOGIOHUI NOPAOOK 6600y 3A60AHL, 3ANUWAIOYU JUe OAMU 3anycKy 3d60aHb, KOMPI
3a62c0U NOOAIOMbCA V YbOMY NOPAOKY. Buseneno, wo nianysanus po3knady 3-x abo 4-x pobim 6uxkoHyemvcsa y
cepeOHboMY wisUoule 3a CNaoH020 NOPAOKY 6800y 3a80anb. OOHAK OUIKYEaHe NPUCKOPEHHS 3d CRAOHUM NOPAOKOM
6600y 3a60aHb He MOJice OYmMu OYiHeHUM 3 BUCOKOI0 O0ocmosipnicmio. Lletl pezynbmam cnpocmosye MONCIUBICTD
Mauinymoeamu NOpsOKOM 3Aa80aHb 3 Memoio OLbul eheKmusHo20 OMpUManHs po3Kiadié 8 0OUHOUHOMY GUNAOK)
3a0aui nIaHY8aHHsa Po3Kaady abo y 0eKitbkox maxux eunaoxax. TintbKu AKuo 3a0ayi NIAHYS8AHHS PO3KNadie 3 3-ma abo
4-ma 3a80anuHAMU ROOIOHI 00 CNAOHO20 NOPAOKY 8600y 3A60AHL [ NOOAIOMbCS MUCAYL MAKUX 3a0ay, Mo Jjuuie mooi
BUKOPUCIAHHS MAKO020 NOPSIOKY 8600 3A80AHb PEKOMEHO08AH0. Beooumu 3a60anns epekmusno y maxomy cmuii éce
wje MOoJNCIUB0 MOOL, KOAU PO3KUO PI3HUX 00 €MI6 3a60aHb MA PI3HUX 642 NPIOPUMEmié He € CUNbHUM, W0 CMmAe
OnudicuUM 00 8UNAOKY 3A2ANIbHO20 3ANI3HIOBAHHS 34 PIGHUX 00 €Mi6 3a80aHb I pieHuX eae npiopumemis. Lleil unaook €
Haubitbu npueadIUGUM, 0e 4ac 0OHUCTeHb 3a CNAOH020 NOPSAOKY 3A60aHb Modice ckopouysamucs 00 10 % i 6invwe npu
NIAHYBAHHI PO3KAAOI8 i0 2-X 00 6-mu 3a80aHb, W0 MAawms y CKAadi 810 080X 00 YOMUPLOX AOO0 HABIMb N SIMU YACMUH
KOdiCHe.

Knwwuosi cnosa: niamnysanns 3a60anb, WIAHYSAHHA HA OOHIU MAUWUHI 3 NEPEMUKAHHIMU, MOYHA MOOENb,
3a2abHe 36a4CeHe 3ani3HI8AHHA, YAC 00YUCTeHHS, BUCXIOHUL NOPAJOK 3A680AHb, CNAOHUL NOPAOOK 3d80AHD.

Annomauyun. Pacnucanue, obecneuyusaioujee Cmpoz0 MUHUMATbHOE 636euleHHOe obujee 3anazovleauue,
MOJICHO HATIMU NO COOMBEMCMBYIOWEl YeLOYUCTCHHOU 3a0aye TUHEUH020 npo2pamMmuposanust. OmKpoimbiM A6IAemcs
B0NPOC O MOM, MEHAEMCS Jil 6PeMsl GbIYUCICHUS. MOYHO20 PACNUCAHUSL, eClu 0ambl 3anyCKa 3a0aHUull 68005MCS 6
MoO0enb 6 obpamuom nopsoke. Lleno cocmoum 6 mom, umoobl YCMAHOSUMb, QUM U HA CKOPOCHb GbIYUCTCHUS.
MOYHO2O  pelleHuss Nops0OK 3A0aHUll 6 WIOMHOM — NPOSPecCUpyiomeM  OOHOMAWUHHOM — NIAHUPOBAHUU  C
nepexmoueHusiMu 6e3 npocmost. 3a0anust Mocym umems paziuyHvle 00bEMbL U paziuuHble 8eca npuopumemos. s
HOUCKA PACRUCAHULU ¢ MUHUMATIGHBIM OOUWUM 636CULEHHbIM 3ANA30bI6AHUEM UCNONb3YEMCsl MOOeTb OY1e6020 TUHEUHO20
npoepammuposanus. Jlis 00Cmudicenus yKazaHHou yeau npoeooOUnICst blHUCTUMENTbHOE UCCIEO08AHUE C YETbIO OYEHKU
YCPEOHEHH020 BPEMEHU BbIMUCAEHUS KAK 0151 80CX00sWe20 NOPAOKA, maK U 08 HUCX00se20 NopsaoKa 0am 3anycKd
3adanuil. Jlaree omHOCUMENbHASL PAZHOCb MeXCOY 8PeMEHAMU SbIYUCICHUL Q0JIXNCHA Oblmb oyeHeHna u 0opabomana.
Iopsioox 3a0anuil énusem Ha CKOPOCMb GbIYUCTEHUSL MOYHO20 PeWenusl, HO 3mo edsa Ju npedckazyemo. Ilpuuuna
cocmoum 6 moM, uMO 3a0aHUs MO2YM UMeMb pA3IuyHble 00bEMbI U paA3IUYHblE Becd NPUOPUMEMO8, HIMO
00noIHUMeENbHO “pazmuvléaem’” cOOMBEMCMEYIOWUll NOPAOOK 66e0eHUs. 3A0AHUL, OCMAGIAAL UL OAMbl 3aNYCcKa
3a0aHutl, KOMmopwvle 6ce20d NOOAIMCs 8 yKazvleaemom nopsaoxe. ObnapysiceHo, Ymo nianuposanue pacnucanus 3-x ui
4-x 3a0anuil 8bLINONHAEMC 8 CpeOHeM Obicmpee Npu HUCX00AujeM nopsioke gsedenusi 3a0anuil. OOHAKo odcudaemoe
yCKopenue npu HUCXoosuem nopsaoke 66edeHusi 3a0aHutl He Modicem Oblmb OYEHEHO C BbICOKOU 00CMOBEPHOCHBIO.
Dmom pe3yibmam onposepeaem 603MONCHOCHb MAHUNYIUPOSANb NOPSOKOM 3A0aHUlL C Yelblo bolee dPhexmueno2o
NOMYHeHUs. PACRUCAHUL 8 eOUHUYHOM CyHae 3a0aqu NIAHUPOSAHUS PACNUCAHUSL UIU 8 HECKONbKUX MAKUX CHYYAsX.
Tonvko ecau 3a0auu NAAHUPOBAHUS PACRUCAHUN ¢ 3-MA UlU 4-Msa 3A0AHUAMU NOOOOHBI HUCXOOAWEM) HOPAOKY
66e0eHUs 3a0aHull U NOOAIOMCA MBICAYU MAKUX 3a0a4, MO JUb Mo20d UCHOIb308AHUE AKO20 NOPAOKA 68e0eHUs]
3a0anuil pekomeHo008ano. Beooums 3aoanus 3¢pgpexmusno 6 maxom cmuie 8cé ewé 803MONCHO Mo20d, Ko2od pasdpoc
PA3IUUHBIX 005EMO8 3a0ANUL U PA3IULHBIX 6€CO8 NPUOPUMEN OB He SAGISLEMCS OULYMUMbBIM, YO CHIAHOGUMCSL Oudice K
cayuaro obue2o 3anazobl8anus Npu PAGHLIX 00EMAX 3A0AHUIL U PABHBIX 8eCax NPUOPUMEn08. DMOom Cryyatl A8Aemcs
Haubonee npusIeKamenbHulM, 20e 8pemMsl 8bIYUCICHUL NPU HUCX0O0AueM NOPAOKe 3a0aHUll MOJCem COKpaujamovcs 00
10 % u 6onee npu nianuposanuu pacnucanuii om 2-x 00 6-mu 3a0aHull, KOMOpble UMEIOm 6 cocmase om 08yx 00
uemuvIpéx uau oaice NAMU Yacmell Kaxcooe.

Knrwouesvie cnosa: nianuposanue 3a0anuil, WiAHUpOSAHUE HA OOHOU MAWUHE C NEPeKNOYeHUSMU, MOYHAS
MoOdelb, obuee 836euleHHOe 3ana3obléanue, 6Pemsl blYUCICHUsL, B0CXO0SUWUI NOPSOOK 3A0AHUL,; HUCX0OAWUL NOPSIOOK
3a0anul.

Job order efficiency in the idling-free preemptive scheduling

A schedule ensuring the exactly minimal total weighted tardiness can be found with the
respective integer linear programming problem involving the branch-and-bound approach [1, 2]. A
class of tight-tardy progressive single machine scheduling with idling-free preemptions exists, in
which release dates are set at non-repeating integers from 1 through the total number of jobs, and
due dates are tightly set after the respective release dates (although sometimes a few jobs can be
completed without tardiness). An open question is whether the exact schedule computation time
changes if the release dates are input to the model in reverse order [3, 4]. The ascending job order
implies inputting the release dates in ascending (i. e., starting from 1) order, and the descending job
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order implies inputting the release dates in descending (i. e., starting from the last job) order.

The first attempt was made in article [5] which showed that a possibility exists to find
schedules more efficiently by equal-length jobs. For instance, schedules of 5 jobs consisting of two
processing periods each were found on average by 14.67 % faster for the descending job order. In
another example of 7 three-parted jobs, an optimal schedule was found on average in 69.51 seconds
by the ascending job order, whereas the descending job order took just 36.52 seconds to find it,
saving thus 32.99 seconds. In general, article [5] revealed that, in the case of equal-length jobs,
scheduling a fewer jobs divided into a fewer job parts is executed on average faster by the
descending job order. As the number of jobs increases along with increasing the number of their
processing periods, the ascending job order becomes more efficient. However, the computation time
efficiency by both job orders tends to be irregular.

In the case of different job lengths studied in article [6], scheduling 2 to 5 jobs is executed
on average faster by the descending job order input, where 1 % to 3 % speed-up is expected. Further
increment of the number of jobs to be scheduled cannot guarantee any speed-up even on average.
This result is similar to that in the case of equal-length jobs, and there is no regularity in such an
efficient job order input. Therefore, article [5] revealed that, without any assurance for a single job
scheduling problem, the efficient exact minimization of total tardiness by the descending job order
input must be treated as on average only.

So, now the question is whether similar conclusions and properties are still peculiar to the
general case when the jobs have different lengths and different priority weights [7, 8]. Will the
efficiency of total weighted tardiness exact minimization by a job order input continue degrade
(caused by applying priority weights)? How much time can be saved while computing exact
schedules? These questions will be answered by a study similar to the studies in [5] and [6], but
final recommendations aggregating all the studies on the class of tight-tardy progressive single
machine scheduling with idling-free preemptions are to be formulated as well.

The goal and tasks to achieve it

The goal is to ascertain whether the job order in tight-tardy progressive single machine
scheduling with idling-free preemptions influences the speed of computing the exact solution. The
jobs can have both different lengths and different priority weights. Just as it was in [5] and [6], here
the Boolean linear programming model provided for finding schedules with the minimal total
weighted tardiness will be used. To achieve the said goal, a computational study should be carried
out with a purpose to estimate the averaged computation time for both ascending and descending
orders. For this, a pattern of generating instances of the job scheduling problem will be suggested
similarly to that how it was done in articles [5] and [6]. Then the relative difference between the
computation times is to be estimated and treated. The research result is expected to either reveal or
disprove a possibility to manipulate the job order for obtaining schedules more efficiently, which
will be the finalization of the research results in articles [5] and [6]. Eventually, the research results
of all the three studies are to be combined and summarized.

Minimal total weighted tardiness by the varying number of processing periods

Every job is associated with its number of processing periods, priority weight, release date,

and due date. Let job n be of H, processing periods, and w, is its priority weight, r, is its release

date, d_ is its due date, where n =1 N by the total number of jobs N, N eN\{l}. Integer r, is the

time moment, at which job n becomes available for processing [7, 9]. Weights {Wn}?:1 are positive

integers. All the time moments and the processing periods are measured in the same time units, and
thus they are synchronized.
Vector of processing periods (or job lengths)

H = [H?i‘ ]le\" € N}\ (1)

associated with job priority weights
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W=[w,] eN )
does not have any specific constraints applied to it. Unlike vector (1), vector of release dates
R = I:r:'i‘]lx;\;' € NN (3)

is constrained depending on the job order input and the requirement of that job preemptions be
idling-free. If the release dates are given in ascending order then

r,=n Vvn =1,_N. (4)
If the release dates are given in descending order then
r=N-n+1 vn=1N. (5)
Vector of due dates

D=[d] N ©)

is not purely random as the due dates are tightly set after the release dates, in whichever order they
are given:

d,=r,+H,-1+b, Vn=L N (7
for ascending order and
d =r+H —-1+b,_ ., vn=L N (8)
for descending order, where b, is a random due date shift

b,=w(H,-¢) for n=1 N (9)

with a pseudorandom number ¢ drawn from the standard normal distribution (with zero mean and
unit variance), and function \|/(E,) returning the integer part of number & (e. g., see [1, 3, 5, 6]).
Due date shifts (9) are generated until

d >1 vn=1 N. (10)

H

HH‘ < Hn+] and dn < dn+l and W Z Wt Vn=1 N-1 (11)

for the ascending job order input, then due date shifts (9) are re-generated as well. Symmetrically, if
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H >H 6 and d >d, and w <w,_, Vn=1 N-1 (12)

n+l n+l

for the descending job order input, then due date shifts (9) are generated once again until such
shared monotonicity is broken [6]. This is done so because in the case of when either inequalities
(11) or inequalities (12) are true, a schedule ensuring the exactly minimal total weighted tardiness is
found trivially, without resorting to any algorithm or model: if (11) are true for the ascending job
order input, an optimal schedule is composed by arranging jobs from the earliest one to the latest
one; if (12) are true for the descending job order input, an optimal schedule is composed by
arranging jobs from the latest one to the earliest one [6]. This was proved for the case of equal-
length jobs in article [5]. A more general case, when jobs can have different processing periods, was
proved in article [6]. Obviously, associating jobs with their priority weights by (11) or (12) cannot
violate the schedule triviality: a more important job (whose weight is greater) can always be
released earlier, and thus its weighted tardiness is minimized.

Once due date shifts (9) are given properly, due dates (7) set in the order corresponding to
ascending order of the release dates (4) are

d,=H, +n-1+b Vn=1N (13)

and due dates (8) set in the order corresponding to descending order of the release dates (5) are

d,=N+H,-n+by ., Yn=1 N. (14)

The length of the schedule is

TzleHn. (15)

The goal is to minimize the total weighted tardiness through schedule’s length (15), i. e. to schedule
N jobs so that sum

an-max{o,e(n; H,)-d,} (16)

would be minimal, where job n is completed after moment G(n; Hn) , Which is
o(m H,)e{L,T}.

This goal is equivalent to finding such decision variables which minimize sum [6, 10]

33 S @

n=l h=l t=1

where x., is the decision variable about assigning the h-th part of job n to time moment t:
X =1 if it is assigned; x,, =0 otherwise. The triple-indexed weights (these ones are not the job
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priority weights)

N

Moo

h=1) na
are calculated as follows:
Ay =0 (18)
by
ro=l+h <t<T-H, +h Vvh =1H -1 (19)
and
Aot = O (20)

n

by a sufficiently great positive integer o (Similar to the meaning of infinity, i. e. it is an infinity
“substitute” for real-practice calculations) when (19) is not true;

Mgy =0 (21)
by
r—1+H <t<d, (22)
and
Moy = (t=d, )W, (23)
by
d <t<T (24)
and
Mg = O (25)
when both (22) and (24) are not true. In (20) and (25), for instance,
N T
a=§:§:w¢ (26)
1t

can be used [1, 5, 6]. The decision variables constraints are as follows:
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Xne €10,1} by n=1L N and h =1 H, 6 and t=1T, (27)
T - —_—
anhnt=1 by n=LN and h=1H_, (28)
t=1
N H,
DD X =1 by t=1T, (29)
n=1 h=1l
T H,-1
ZZ)C”,LJ+H”JC”HJ\<\H" by n=1 N and t=1T 1. (30)

J=tHl k=l
An optimal job schedule
S = [s:]w by s e {1_N} forevery t=1T (31)

is found by a set of the decision variables at which sum (17) is minimal, where

Sy =N V=L H, by 0°(n;h)e{1T]

and 6°(n;h))<0 (n;h,+1) for h =1, H -1.

Thus, 6*(n; Hn) is a moment after which job n is completed, and, according to sum (16),

8*(N)=iwn-max{0,e*(n;Hn)—dn} (32)

Is the exactly minimal total weighted tardiness for those N jobs. Generally speaking, the problem
of minimizing sum (17) by (18) — (26) and constraints (27) — (30) can have multiple solutions
(multiple sets of the optimal decision variables), so multiple optimal schedules ensuring the same
minimal total weighted tardiness (32) can exist.
A pattern of generating instances of the job scheduling problem
Different job lengths are randomly generated by drawing numbers out of the uniform
distribution [1]:

H,=vy(4v+2) for n=1, N (33)

with a pseudorandom number v drawn from the standard uniform distribution on the open interval
(0;1). So, the job length is randomly generated between 2 and 5 [11, 12]. The priority weight of

job n is randomly generated in the identical way:
w, =y (100v+1) for n=1 N, (34)
When job lengths (33), priority weights (34), and due date shifts (9) by some N are generated for

the ascending job order input so that inequality (10) holds and at least one of the inequalities in (11)
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is violated, then an ascending order schedule by job lengths {HH}L, their priority weights {wn}N

n=1’
release dates (4), and due dates (13) is computed by minimizing sum (17) by (18) — (26) and
constraints (27) — (30). Alternatively, a descending order schedule by job lengths

(H,}" after H®™ =H, vj=1N and H,=H{™) for n=1 N, (35)
priority weights

fw, }::l after W™ =w, Vj=L N and w, =w® for n=1, N, (36)

n

release dates (5), and due dates (14) is computed as well, where job lengths (35), priority weights
(36), release dates (5), and due dates (14) are obtained by just reversing (i. e., flipping the left and
right) job lengths {Hn}:':l, priority weights {Wn}'::l, release dates (4), and due dates (13) for the
ascending job order input.

At a fixed number of jobs N and for a job scheduling problem instance tagged by an integer
c, denote the schedule computation times by ascending order and descending order by SASC(N, c)

and 8y, (N, ¢) in seconds, respectively. Each of these amounts implies computation time spent on

just searching the solution to the problem of minimizing sum (17) by (18) — (26) and constraints
(27) — (30), i. e. on exploring nodes by the branch-and-bound algorithm [6]. At that, the time spent

on forming constraints (27) — (30) is not counted in &, (N, c) and 8, (N, c). Therefore, these

amounts in article [5] were called inner computation times. However, article [5] showed that
difference between inner computation times and outer computation times (which count also time
spent on forming the constraints) is negligible [6].

If the total number of the instances is C, then the averaged inner computation times are

e (N) =2 D 8, (N ) @
and
8Desc(N)zéZSDesc(N'C)' (38)

In percentage terms, the relative difference between inner computation times (37) and (38) is

H(N)=1OO'SASC(Q)_(?\TBSC(N)- (39)

Relative difference (39) will be estimated by N =2, 8 for C > 250 [6].
Computational study
The computational study is executed on CPU Intel Core i5-7200U@2.50 GHz using
MATLAB R2018a. Relative difference (39) between inner computation times (37) and (38) for
C =250 is shown in Figure 1, where the horizontal zero level line is imposed. This line allows
seeing where the schedule is computed faster by the respective job order input [6].
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Figure 1 — Relative difference (39) between inner computation times (37) and (38) for 250
instances generated at each number of jobs to be scheduled

Unfortunately, Figure 1 cannot ensure the seeming primal conclusion about the descending
job order input is faster by scheduling 2 to 5 jobs and is slower by scheduling 6 or 7 jobs. The
reason is too vast scattering of the inner computation times

— .SAsc(N'C)_SDESC(N’C)
S W "

for many instance tags c e {1, 250} . Indeed, repetition of the computations for 1000 instances gives

another, dissimilar to Figure 1, view of relative difference (39) presented in Figure 2 as a circle-
dotted polyline. Moreover, the second version of generating 1000 instances gives the third view (the
square-dotted polyline in Figure 2).
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Figure 2 — Two versions of relative difference (39) between inner computation times (37) and (38)
for 1000 instances (circle-dotted and square-dotted polylines) generated at each number of jobs to
be scheduled

In this connection, it is useful to see how the upper and lower bounds of single-instance
relative difference (40) are situated with regard to the relative difference averaged over three
relative differences (39) whose polylines are plotted in Figures 1 and 2. Figure 3 shows the
averaged polyline for the relative difference along with the upper bounds

maxu(N, c) (41)

c=1,C

for the three respective versions described above. It is clearly seen that the maximal acceleration by
the descending job order input achieves 50 % to 97 % according to relative difference (39), which
means (by re-transforming the relative difference formula) that the descending job order input
occurs to be faster by 2 to almost 33 times. An example of such a huge acceleration benefit by the
descending job order input has been registered in scheduling 4 jobs, where

H=[4 5 2 5], W=[64 5 20 59], D=[15 14 3 11]
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and an optimal schedule is

S=|s], =[433424422241111 2

by 9*(4):10 for the descending job order input (r, =4), and the respective computation times

have been 375 milliseconds and 11.5 milliseconds. On average, scheduling 4 jobs is about 10 %
faster by the descending job order input, which is about acceleration in 42.7 milliseconds.
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Figure 3 — The relative difference averaged over three relative differences (39) whose polylines are
plotted in Figures 1 and 2, and the respective three polylines (dotted, asterisk-dotted, and hexagram-
dotted ones) which are upper bounds (41)

The lower bounds

QJ%M(N, C) (42)

for the three respective versions are shown in Figure 4. It is clearly seen that the maximal
acceleration by the ascending job order input achieves 100 % to 1600 %, which directly means that
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the ascending job order input occurs to be faster by 2 to almost 17 times (it is worth to remember
that the relative difference or its bounds, with respect to the horizontal zero level line do not show
the acceleration symmetrically). An example of such a huge acceleration benefit by the ascending
job order input has been registered in scheduling 5 jobs, where

H=[3 5 4 4 4], W=[86 16 8 5 11], D=[5 12 12 10 13]
and an optimal schedule is

S=|s],,=[L112225352255333444 4

by 8*(5) =82 for the ascending job order input (r, =1), and the respective computation times have
been 2.7508 seconds and 46.7545 seconds.
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Figure 4 — The respective three polylines (dotted, asterisk-dotted, and hexagram-dotted ones)
which are lower bounds (42)

The average upper bound by (41) is about 75 %, which means that the descending job order

input, at its maximal acceleration instances, occurs to be 4 times faster. The average lower bound by
(42) is about —389 %, which means that the ascending job order input, at its maximal acceleration
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instances, occurs to be 4.89 times faster. However, this does not mean that the skew to the
ascending job order input is significant as there are a few of computational artifacts (in every of
those three versions of the job scheduling problem instance generations) with huge gaps between
the orders.
Discussion

The main explanation for that gigantic gap between lower and upper bounds is the uniform
randomness [13] of job processing periods and priority weights. Indeed, the only “carrier” of the job
order input feature, apart from the release dates, is the due dates. But even here, the due dates are
randomized by adding due date shifts (9) associated with job processing periods. Consequently,
those intense deviations from the averaged relative difference (Figure 3) are logic results of
deviations from the respective job order input feature. For instance, in scheduling 4 jobs with

H=[5 3 5 5], W=[39 57 8 6], D=[5 6 7 20] (43)
by
R=[1 2 3 4],

an optimal schedule

*

S=[s:]mg=[111112223333344444]

by 8*(4) =162 is found in 1.7899 seconds, whereas the descending job order input, which is
H=[5 5 3 5], W=[6 8 57 39], D=[20 7 6 5] (44)
by
R=[4 3 2 1],

takes 10.6626 seconds for its optimal schedule

*

S=|s],=[444443332222211111]

The due dates in (43) are given in ascending order, but the priority weights in (43) resemble rather a
descending order. This is why the difference between the computation times here does not comply

with that H(4) in Figure 3. If to set the weights in reverse order, then the ascending job order input
H:[5 3 5 5], W:[6 8 57 39], D=[5 6 7 20] (45)

becomes more resembling the ascending order, as well as the descending job order input

H=[5 5 3 5], W=[39 57 8 6], D=[20 7 6 5] (46)

53



HU®POBI TEXHOJOTIIL, Ne 27, 2020

becomes more resembling the descending order. In this case, an optimal schedule

*

S:[S:]Mg:[123333322111144444]

by 9 (4) =72 is found in 1.8524seconds, whereas the respective optimal schedule

*

S=|s],=[43222223344441111]1]

by the descending job order input is found in 0.5923 seconds. Thus, as inputs (45) closely resemble
the ascending order, and, vice versa, inputs (46) closely resemble the descending order, the

difference between the computation times here complies with that u(4) in Figure 3. Other similar

examples confirm this hypothesis.
Conclusions

In tight-tardy progressive single machine scheduling with idling-free preemptions, the job
order influences the speed of computing the exact solution but it is hardly possible to predict it. The
matter is that the jobs can have both different lengths and different priority weights, that
additionally “dithers” the respective job order input leaving only release dates which are always
given in that order. It has been revealed that scheduling 3 or 4 jobs is executed on average faster by
the descending job order input. However, the expected acceleration by the descending job order
input cannot be estimated with a great confidence factor. This result disproves a possibility to
manipulate the job order for obtaining schedules more efficiently in a single job scheduling problem
or in a few such problems, just like it was for the case of equal priority weights (although in a more
“light” statements, without rigor affirmations). Only if the job scheduling problems by 3 or 4 jobs
resemble the descending job order input, and there are thousands of such problems, then it is
recommended to use that job order input.

Considering the three classes of job scheduling problems (total tardiness by equal job
lengths [5], total tardiness by different job lengths [6], and total weighted tardiness), it is obvious
that the possibility to manipulate the job order for obtaining schedules more efficiently decreases as
more differences in the problem parameters are included. Moreover, if even the possibility exists, it
is treated as on average only. As in the two cases of equal priority weights, the descending job order
input appears theoretically efficient for total weighted tardiness exact minimization also. Inputting
jobs efficiently by this job order style is still possible when different job lengths and different
priority weights are both scattered not much, that would be closer to the case of total tardiness by
equal job lengths [5] (and equal priority weights). This case is the most promising one, where the
descending job order computation time can be shorter up to 10 % and more in scheduling 2 to 6
jobs divided into two to four or even five parts each. If the job lengths and priority weights are
pretty scattered, not resembling the descending job order style, the input is recommended to be
made in any handy way.
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