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Annotation. The problem of forming sample estimates of the correlation matrix of observations that satisfy the
criterion "computational stability — consistency” is considered. The variants in which the direct and inverse asymptotic
forms of the correlation matrix of observations are approximated by various types of estimates formed from a sample of
a fixed volume are investigated. The consistency of computationally stable estimates of the correlation matrix for their
static regularization was analyzed. The contradiction inherent in the problem of regularization of the estimates with a
fixed parameter is revealed. The dynamic regularization method as an alternative approach is proposed, which is based
on the uniqueness theorem for solving the inverse problem with perturbed initial data. An optimal mean-square
approximation algorithm has been developed for dynamic regularization of sample estimates of the correlation matrix
of observations, using the law of monotonic decrease in the regularizing parameter with increasing sample size. An
optimal dynamic regularization function was obtained for sample estimates of the correlation matrix under conditions
of a priori uncertainty with respect to their spectral composition. The preference of this approach to the regularization
of sample estimates of the correlation matrix under conditions of a priori uncertainty is proved, which allows to exclude
the domain of computational instability from solving the inverse problem and obtain its solution in real time without
involving prediction data and additional computational cost for finding the optimal value of the regularization
parameter. The application of the dynamic regularization method is shown for solving the problem of detecting a signal
at the output of an adaptive antenna array in a nondeterministic clutter and jamming environment. The results of a
computational experiment that confirm the main conclusions are presented.

Keywords: sample estimates, correlation matrix, dynamic regularization, probability convergence of estimate,
computational stability of estimate, consistency of estimate

Amnoranis. Po3rissHyTO npodiemy ¢opMyBaHHS BHOIPKOBHX OLIHOK KOPEJSALIMHOT MaTpHIi CIIOCTEPEKEHB,
SKI 33JI0BOJBHSIOTH KPUTEPIH «OOUMCIIIOBANbHA CTIHKICTh - CHPOMOXHICTB». JlocimimkeHo cuTyamii, Koau mpsiMa i
3BOPOTHI aCUMITOTHYHI (JOPMHU KOPEIAIIHHOT MATPHIl CIIOCTEPEIKEHBb APOKCUMYIOTECS OIIHKAMHU Pi3HOTO BHIY, SIKi
chopmoBaHi 3a BHOIpKoIO ¢ikcoBanoro o0csry. [lingmaHa aHami3y CIPOMOXHICTh CTIHKMX B OOYHCIIOBAIEHOMY
BiJJHOIICHHI OIIHOK KOPEJSIIHHOI MaTpHIi 3a iX CTaTWYHOI peryispusailii. BusBieHo mpoTupiyds, BIACTHBE 3aaadi
perynspu3alii IUX OLMiHOK 3a ()iIKCOBAHOTO MapaMeTpy. 3allpOIOHOBAHO albTePHATHBHUH MiIXiJ — METOA AWHAMITHOL
perynsipu3zariii, IKUil CIUpaeThCs Ha TEOpEMY €IMHOCTI PO3B'A3Ky 0OepHEHO] 3a/1adi 31 30ypeHUMH BUXITHAMHA JaHUMHU.
Po3pobneHo onTtumanpHUM 32 CEPEeOHBOKBAAPATHYHAM HAOMIDKEHHSIM AalTOPUTM AWHAMIYHOI perymispu3amii
BHOIPKOBHX OIIHOK KOPEJAIIHHOI MaTpHUIll CIOCTepEXEHb, SKUH BHUKOPUCTOBYE 3aKOH MOHOTOHHOTO YOyBaHHS
PEryJIsIpU30BaHOIO MapaMeTpy 3a YMOBH 3pOCTaHHs 00csary BuOipku. OTpUMaHO ONTHMAIbHY (YHKINIO JMHAMIYHOT
perynspuzanii BHOIPKOBUX OLIHOK KOpeNSLiifHOI MaTpuili B yMOBax amnpiopHOi HEBM3HAYEHOCTI IOJ0 iX
CHEKTPaJBbHOTO CKJIaJy. BH3HaueHO mepeBarn ONTHMAJIbHOI AWHAMIYHOI peryispu3amii B CEHCI OOYHMCIIOBAaJIBHOI
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CTIHKOCTI Ta CIPOMOXHOCTI BHOIPKOBHX OIIIHOK KOPEJAIIHOT MATpUIll CHOCTepekeHb. JloBeleHO TepeBary
3a3HAYEHOr0 MiJXOJXy JO peryisipusauii BHOIPKOBHX OLIIHOK KOpEJSIIiHHOT MaTpuli B YMOBax ampiopHoi
HEBHM3HAUCHOCTI, 10 JJO3BOJISIE BUKIIOUNTH 3 PO3B'A3aHHsI 00EpPHEHOI 3a1a4i 001acTh 0OUMCITIOBAIIbHOI HECTIHKOCTI Ta
OTpHUMaTH 1i pillleHHS B PEXNUMI PEabHOTO Yacy 0e3 3aIyueHHs JaHUX NPOTHO3YBaHHS 1 JOJATKOBUX O0YHCIIOBAILHIX
BUTPAT Ha MOLIYK ONTHMAaJbHOrO 3HAYCHHS Hapamerpa peryisipusadil. [lokasaHo ZOKIagaHHS METOHY JHHAMIYHOT
perynsipuzanii 1O BUpIIICHHsS 3aJadi BHSABJICHHS KOPUCHOTO CHTHAJTy Ha BUXOZI aJalTHBHOI aHTEHHOI PELIITKH Y
HeleTepMiHOBaHIM 3aBamoBiii curyamii. I[lpencraBimeHi pe3yibpTaTH  OOYHCIIOBAIBHOTO  CKCIIEPUMEHTY, SKi
MiATBEPIKYIOTH OCHOBHI BUCHOBKH.

Kuro4oBi cioBa: camoperyispu3anis, CTaTHYHA PETyJpu3allis, TMHAMIYHA PeTyJsapr3alis, 301KHICTh OIiHKI
(3a IMOBIpHICTIO), KPUTEPiil CIIPOMOMKHOCTI OIIHOK, KOPEJIALiifHa MaTPHIIS.

FORMULATION OF THE PROBLEM. ANALYSIS OF STUDIES AND
PUBLICATIONS

Inversion of the correlation matrix of observations belongs to the class of problems associated
with the reversal of cause-effect relationships. This procedure is the basis for solving inverse
statistical problems in applications of spectral analysis, space-time processing of multidimensional
signals, control theory, identification, forecasting and decision making [1-6].

Practical solution of such problems involves the replacement of the asymptotic form of the
N-dimensional correlation matrix by its sample estimate, formed on a finite time interval [O,T] in

L iterations using known computational algorithms [5-9]. These algorithms tend to monotonically
increase the rank of the evaluation matrix to the full value when L =N . Due to the inevitability of
the situation when L <N, the indicated evolution in real time raises the problem of the
degeneration of the observation matrix. This leads to the loss of computational stability of inverse

problems on an indefinite interval of iterations L [1, N —1], when the dimension of the system N
has an arbitrary value.

The concept of overcoming the indicated problem is connected with the use of regularization
methods [5-8], which make it possible to obtain computationally stable estimates of the correlation
matrices synchronously with the development of the observed process. The basis of these methods
Is the search for regularizing operators, in which the rule for choosing the regularization parameter
u takes priority.

In the classical formulation, the problem of finding the optimal value of the static
regularization parameter p goes back to the work of Tikhonov A.N. [10] and is solved by residual,

trial-and-error or iterative regularization methods. In particular, when solving a perturbed system of
linear algebraic equations, the search for the regularization parameter pu is organized in such a way

that the residual of the approximate solution is comparable in magnitude with the level of accuracy
of the initial data of the inverse problem [3, 10, 11]. The proper search for the regularization
parameter  is carried out on a certain set of values, and the choice of the optimal parameter p is

based on a priori information [10]. However, in solving the inverse problem in real time, these
methods are characterized by resource constraints of a computational nature, as well as the need for
additional a priori information about the structure of the solution of the optimization problem and
the level of errors of the initial data.

Methods for solving inverse problems with regularization of the maximum likelihood (ML)
estimate of the correlation matrix of observations are considered in a number of works [3, 6-8].
They are classified as methods of static regularization [3, 10], when the problem of zero
eigenvalues is solved by shifting the spectrum of the estimate of the correlation matrix to the right
by some constant number . In this case, the regularized matrix has similar, but not identical,
properties of the initial estimate in the sense of its consistency. Methods of regularization of the
sample estimate of the correlation matrix are characterized by both a limitation of the computational
resource and specific informational limitations. In particular, the determination of the optimal value
of the regularization parameter requires information about the true or expected interference-to-noise
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ratio, the spectral composition of the correlation observation matrix and the possible number of
noise sources [7, 8]. In a non-deterministic situation, getting such information is very problematic.

These restrictions give rise to a dialectical contradiction according to the criterion
"computational stability — consistency” of the estimate [10, 11]. Indeed, the value of the
regularization parameter o should be, on the one hand, sizeable, which guarantees the

computational stability of the inverse problem, and, on the other hand, small, in order to influence
the matrix estimate in the sense of its consistency in the sample size as little as possible.
Overcoming the existing contradiction actualizes the problem of studying the dynamic
regularization of a sample estimate of the correlation matrix in relation to solving inverse problems
under conditions of a priori uncertainty.

The concept of regularization of inverse problems associated with the dynamics of the initial
data is described by Osipov Yu.S. [12], where it is shown that the regularization parameter p of the

inverse problem should be updated in real time. This judgment to some extent has found its
development in a wide range of applications. In the work [5] the procedure for regularizing the ML
estimate of the correlation matrix of interference based on the monotonic decrease of its diagonal
complement with increasing training sample size is considered and the influence of the "weight" of
the diagonal complement on the convergence process of the energy criterion for different estimates
of the correlation matrix is shown. However, the problem of choosing the optimal "weight" of a
diagonal complement on a set of possible values remained open. In this regard, the demand is to
determine the optimal dynamic regularization function of the ML estimate of the correlation matrix
of observations. Solving such a problem involves determining the dependence of the "weight"
(constant) of the regularizing parameter on the size of the training sample. Research in this direction
can complement the results associated with the problem of calculating stable and consistent
estimates of correlation matrices.

The main contribution of this work is the application of the method of dynamic regularization
of sample estimates of the correlation matrix of observations to satisfy the criterion "computational
stability — consistency™ in real time. In the general methodological context, the indicated problem is
solved on a multidimensional complex Gaussian distribution. The known properties of such a
distribution make it possible to analyse the processes of convergence of sample estimates of
correlation matrices in the sense of their computational stability and consistency under static and
dynamic regularization.

The rest of this paper is organized as follows. Section 2 and 3 present the studies of
computational stability and consistency of estimates of correlation matrices and the consistency of
estimates of correlation matrices for static regularization. Section 4 present the method of dynamic
regularization of sample estimates of the correlation matrix and the main result of this work — the
algorithm for calculating the optimal parameter of the dynamic regularization. The effectiveness of
the algorithm is illustrated via simulations for adaptive antenna array example in Section 5. Finally,
Section 6 concludes this paper summarizing the main findings and giving some recommendations
for future work.

STUDY OF COMPUTATIONAL STABILITY AND CONSISTENCY OF ESTIMATES
OF CORRELATION MATRICES

Let the stationary random vector process u(t) =s(t)+n(t), which is an additive mixture of
orthogonal vectors of the signal s(t) and noise n(t), is observed in the N -dimensional Hilbert
space. The norms of the signal and noise vectors satisfy conditions |s(t)| <, |n(t)|| <. The
second-order statistical moments of vectors s(t) and n(t) with the o -correlation of noise and
infinity of the observation interval T are [3, 4]

A, =T|i£go[T1]s(t)s”(t)dt}, A, :TIiLgO[Tl]n(t) nH(t)dt}: R.1, lim [les(t) n”(t)dt} =0,
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where P, — noise power; " — denotes Hermitian (or complex-conjugate transpose) matrix

operation; 0=0,,,, I =1,y —zero and unit N -dimensional matrices.

Based on the adopted model, the asymptotic forms of the direct A and inverse A™
correlation matrices of the observation vector u(t) are determined by the limits

1% y
Azlm{?l’u(t)u (t)dt}:Aerpn.L

A= {Tlimo{%lu(t)u“ (t)d t}} =(A,+P,-1)".

The full rank of the correlation matrix A: rank(A)=N always guarantees the existence of
the inverse matrix A™. In practical applications with a finite interval of observations [O,T] the

asymptotic representations of matrices A and A’ are replaced by their estimates (discrete

analogues) A and A* [6-9]. Such estimates are calculated as source data become available and,
under certain conditions, do not characterized by the full rank.

Let us project the problem of forming estimates of matrices A and A~* on a grid of time
samples, assuming that for a finite sample of size L from a set of vectors u;,u,,...,u , a
multidimensional distribution density is given by

L
p(u,,u,,...,u,) = (7" detA)‘Lexp{ —ZukHA‘luk} .
k=1
Then ML estimate A(L) of the matrix A eQ,, can be written as follows [3, 4, 6-9]:

A(L)= L‘lZL: u 1)

where QO ,, —set of N -dimensional Hermitian matrices.

Algorithm (1) reflects the process of direct summation of single-rank matrices
A, =u,u' Vk €[1,L] in real time. With an increase in the sample size of L to the dimension of the

matrix N, that is L=N, the estimate of A(L) reaches the full rank rank[A(L)]: N . A further
increase in sample size L:L>N in the presence of internal noise is accompanied by natural
regularization (self-regularization) of the matrix A(L). In this case, the estimate of the correlation
matrix A(L) and its inversion A™(L) tend to their asymptotic forms [9]: EmA(L):A,

Eim A‘l(L): A Equation (1) and its recurrent computational modification represented at the k-th step

A=k (k-1 Ay, +u ' |, ke[1L] @

with the initial condition Alzuluf, allows to obtain the direct and recurrent forms of the
estimate’s inversion A (L) for an arbitrary sample size L :

At(L)= L{iuk u{'}_ , ®)

A—l(L)EAf:L[(L—l) A(H)+ULUE]_1. 4)
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Decomposition of a recurrent computational scheme (4) in accordance with the rule [7] gives
the following result

~ _3 L ;5\(11_1) u.u; ~

- - AL, (®)
(L-1) L+tr[A(‘L{l) uLuE] -

where tr{o} — spur of matrix.

In computational practice, the criterion of stability and consistency of estimates (1)-(5) is the
convergence of the corresponding matrix norms [11]:

A-AL)[
=1 (6)
) [A]
At- AL
B(L) = - Gl ™
| A7

The estimate is considered to be stable according to Hadamard, if for any sample size L the
norm of approximation B(L) has a final value of B(L) = <o, where £ — some positive number.

Estimates are considered consistent if the property of their strong convergence to the

corresponding asymptotic forms of matrices A and A is satisfied: P{ Eim 8(L)=0} =1,

P{!im B(L) =O} =1, here P{O} — the probability of the event {0}
Remark 1. The difficulty, and sometimes the impossibility, of obtaining analytical
dependencies €(L) and B(L) is caused by[11]:

— first, the uncertainty of the results due to the degeneration of estimates of the
N -dimensional Hermitian matrix of incomplete rank A(L) in the area of loss of computational
stability G:G{L:L<N,B(L)=o};

— secondly, the complexity~of describing the statistical distribution of eigenvalues and
unitary vectors of a random matrix A(L) with an arbitrary sample size.

Ige(L)],
Ig[p(L)]

Ig[e(L)],
I2[p(L)]

6

4

1 - - -4
0 1 2 3 lg(L) 0 1 2 3 Ig(L)

Figure 1 — Convergence curves €(L) and (L) obtained according to the different algorithms:
(a) — algorithms (1) and (3); (b) — algorithms (2) and (4)
A natural way to overcome the above limitations is to conduct simulation studies that are
reliable in the sense of convergence of estimates A(L), A™(L) to the corresponding asymptotic
forms. The convergence of computational algorithms (1)-(5) demonstrate the simulation results,
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which are presented in Figures 1 and 2 in the form of averaged nonstationary dependences &(L)
and B(L) with N =10.

Ig[p(L)]

0 1 2 3 Ig(L)

Figure 2 — Curves B(L) obtained according to the algorithm (5): Case 1 — A, =u,u!" ;
Case2— A, =1

Figure 1, a shows the convergence curves (L) and B(L) of the estimates A(L) and A (L)

respectively, obtained in the process of direct summation of single-rank matrices (1) with the
subsequent inversion of the result of the summation according to algorithm (3).

Figure 1, b shows convergence curves &(L) and B(L) obtained in accordance with the
procedure for the formation of estimates A(L) by the recurrent algorithm (2) with further inversion
of the result of the recurrent approximation using algorithm (4).

Figure 2 shows the convergence P(L) of estimate A™*(L) obtained by the recurrent algorithm
(5) for the following initial conditions: A, =u, u!' —curve 1 and ;5\1 =1 —curve 2.

The tendency of the behaviour of dependencies €(L) and PB(L) indicates a number of
features inherent in algorithms for calculating estimates ,&(L) and A‘l(L) :

— estimates (1)-(5) belong to the class of consistent estimates;

— algorithms (2), (4) and (5) due to their recurrent form have the property of smoothing
estimates A(L) and Afl(L), which indicates their effectiveness — the minimum variance of
estimates with respect to direct summation algorithms (1) and (3);

— algorithms (3)-(5) are characterized by the objective existence of a region of loss of
computational stability G of estimate A(L) for the initial condition A, =u,u;' (in this case with

L <N =10). However, under condition ;5\1 =1, estimate (5) will be computationally stable, but it
will not satisfy the approximation criterion in norm B(L) <1 over the entire range of values L
(Figure 2, curve 2).

Remark 2. Estimates (3)-(5) of matrix A‘l(L), despite their consistency in terms of sample

size L, have an area of loss of computational stability G, in which, under constraint L<N,
approximation B(L) — . As is known, computationally stable estimates of matrices can be

obtained using static regularization method [6-8, 10]. In this case, it is appropriate to investigate the
question of the consistency of such estimates.
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STUDY OF THE CONSISTENCY OF ESTIMATES OF CORRELATION MATRICES
FOR STATIC REGULARIZATION

Static regularization implies a "forced" shift of the spectrum of the initial estimate of matrix
A(L) to the right by a fixed value of the regularizing parameter p= f (&) >0, which is
consistent with the level of error & [7, 8]:

A, (L) =AL)+ul .
This guarantees the computational stability of the estimate A (L) :[A(L)+ HIT,
regardless of the size of the sample L: | A.'(k)|<eovk e[1L].

By analogy with (6) and (7), we investigate the consistency of estimates of the direct AH(L)

and inverse A;l(L) matrices by the convergence criterion of regularized matrix norms:

A_AH(L)HZ
g (L) = —, (8)
[ Al
At-ANL) [
B.(L)= - 2( | : 9)
[A7

In its limit, despite the consistency of the initial estimate A(L) , the matrix norm (8) does not

reach zero and, other things being equal, will be limited to the value of the fixed regularization
parameter pi:

N >0
|Al°

From (10) it follows that for a fixed regularization parameter p, estimate AH(L) does not

Eincl g, (L)= u? (10)

satisfy the criterion of consistency P{ E‘LLI%(L) = 0} =1.

The calculation of the limit value of the matrix norm f,(L) will be carried out based on the

spectral decomposition of the asymptotic matrix A, as well as its estimate ,&(L) [10,11]:

A= ixini, (11)
A(L) =Zii<L)ﬁi(L), (12)

where A, =X (A) and Xi(L)zxi[Z\(L)] — eigenvalues of matrix A and its estimate A(L)
respectively; I, =e,e” and TIL(L)=8(L)E"(L) - projectors of eigenvectors € =&(A) and
e(L) =“e'i[;5\(L)] of matrix A and its estimate A(L) respectively.

Expressions (11), (12) allow us to represent the asymptotic form of the direct matrix A as the
limit of the spectral decomposition of a consistent estimate A(L):

A=ixini = miii(L)ﬁi(L). (13)
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The passage to the limit (13), by virtue of the known lemmas of the theory of limits on the
summation of infinitely small and the product of a bounded variable by an infinitely small value,
guarantees the existence of the following limits [11]:

A =lim &, (L)vi e [LN], (14)
Il = Elml'[ (L) Vie[LN]. (15)

In this context, the spectral decomposition of the inverse matrix A~ and its regularized
estimate A '(L) has the following form:

A=Y ;Hi, (16)
Al(L) = ;X(L) I (L). (17)

Based on (16), (17), the value of the matrix norm for an arbitrary sample size L is

B(L)( ) { { LN E i(L)HZ'

lg[p (D] 1g[p (L]

3
0 1 2 3 lg(L) 0 1 2 3 lg(L)

-3
0 1 2 3 lg(L)

c)

Figure 3 — Dependencies B,(L) for a fixed regularization parameter p obtained according
to the different algorithms: (a) — algorithm (3); (b) — algorithm (4); (c) — algorithm (5)

Based on the existence of the limits (14), (15) and condition tr II; =1, we have the limit value
of the matrix norm 8, (L):
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imp0-( 3% | 3t o a2)

i=1 i=1
Equation (18) demonstrates the inconsistency of regularized estimate f&j(L) for a fixed
parameter L > 0: P{ ILiElBH(L):O} #1.

Figure 3 shows the experimental averaged nonstationary dependencies B, (L) that reflect

specific properties of the regularized estimates (3)-(5) respectively for fixed values p=01,
n=0,3, and u=0,7 with the order of the matrix N =10. Here the current values of the matrix
norms ,(L) are marked with solid curves, and their theoretical limits (18) correspond to the
dashed lines.

The approximation of the convergence trajectories 3,(L) of each of the regularized estimates

A;l(L) (3)-(5) to the theoretical limit (18) for a finite number of iterations L, shows that all of
them are computationally stable but not consistent:

B, (k) <o Vke [1L]
AlL): .
P{IimBH(L):O};ﬁl

Lo

The choice of the value of the static regularization parameter p is determined by the required
accuracy of approximation B,(L) for a given sample size L. The selection rule uzu[B“(L)]
provides a compromise between the accuracy of approximation B,(L) and sample size L.
Achieving such a compromise, under conditions of a priori uncertainty about the structure of the
spectrum of the correlation matrix A;l(L), is problematic. Overcoming this uncertainty can be a

variation of parameter p. At the same time, unjustified variations, such as an increase in the

regularization parameter, worsen the correspondence of estimates (3)-(5) to initial data, thereby
violating their consistency, and, consequently, the possibility of self-regularization (Figure 3).

Remark 3. There is currently no universal approach to finding the optimal value of the
regularization parameter by the criterion “computational stability — consistency" [10-12]. It can be

considered a successful approach in which the natural properties of the ML estimates ;‘\(L) and
A’l(L) are used, in particular, their consistency and ability to self-regulate. These properties of
estimates A(L) and A‘l(L) indicate the need to switch from static regularization (p=const) to a
monotonic decrease of the regularization parameter as the sample size increases: ILiLnoo“(L) =0.

This type of regularization of sample estimates of correlation matrices is classified as dynamic
regularization.

DYNAMIC REGULARIZATION OF SAMPLE ESTIMATES
OF THE CORRELATION MATRIX

Dynamic regularization of the sample estimate of the correlation matrix is based on the
uniqueness theorem for the solution of the inverse problem with perturbed input data [10, 11]. From
the theorem, it follows that if the value of the parameter p(L), as a monotone function, satisfies
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condition ILianp(L) =0 with u(1)>0, then for regularized estimates A (L)=AL)+pL)! and

A;l(L) = [A(L) +u(L) I]f1 they converge to the corresponding asymptotic forms:

. x -1 . -1
A=lim A (L), A =!'L1Au (L).

Lo

Consequently, in contrast to approximation (18), the matrix norm (9) will have a zero limit
Eim B.(L)=0 and satisfy condition B, (L) <o for any sample size L. The latter indicates

computational stability and consistency of estimate A;l(L) = [;‘\(L)+u(L)I]_l with the dynamic
regularization parameter u(L).

In the framework of the method of dynamic regularization, the algorithms of direct (3) and
recurrent (4), (5) calculations of the inversion of the matrix estimate A;l(L) are transformed to the

following form:

Aul(L)zL[Zukuk“w(L)l} , (19)
k=1
-1 -1 -1 H -1
A, (L)EAPL:L[(L—l)AH(L_1)+uLuL+1VLLI} , (20)
1
A;l(L)sA[i_ L o AunAw X Au(L1). (21)

(L _1) L —tl’|:A;(1|_—1) ApLj|

The tendency of the behaviour of the convergence trajectories B,(L) of estimates (3)-(5) to

the asymptotic form A (Figures 1 and 2) allows, without disturbing the generality of reasoning
about the estimates (19)-(21), to restrict ourselves to studying the consistency and computational

stability of the algorithm (21). Theoretical studies of the consistency of the ML estimate A(L) and
numerical experiment (Figures 1 and 2) indicate the expediency of using the monotonous law of
decrease of the dynamic regularization parameter n(L) in practical applications with increasing
sample size L, namely the following algorithm:

w(L)=g(LL™. (22)
where g (L) — some weight function.
For the algorithm of dynamic regularization (22), the trajectory of convergence B,(L) of the

matrix estimate A;l(L) for arbitrary values g >0 of the weight function g (L) generalizes some
surface

|a-Al(Lg)[

[a]

Figure 4 shows a three-dimensional surface B,(L,g) (Figure 4,a) and the isolines of the

B.(L.9)=

surface B,(L,g) (Figure 4,b), obtained with the dimension of the matrix N =20.

The analysis of the dependencies shows that due to the quadratic nature of the function 8, (L)
the surface B,(L,g) has the so-called "ravine", the coordinates of which satisfy the numerical
solution of the optimization problem 8, (L),,, according to parameter g :
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B (L = minB, (L.9),

Norm of matrix Ig[[in(L.g)]
Sample size, L

Parametr g Sample size, L Parameter g
a) 6)
Figure 4 — Trajectory of convergence B, (L) for arbitrary values of the weight function g (L)

where Q — the set of possible values g >0 of the weight function g(L).

In the analogue representation, the coordinates of the trajectory of this "ravine" satisfy a linear
inhomogeneous differential equation

dg(t) , 1 _ _
TJng(t)—l, 9(0)=1.

Solving this equation on a grid of L time samples gives the following result:
L-1
o(L)=N-(N -2 L2 g)-1.

The resulting expression reflects the process of convergence of the weight function g(L) to
its optimal value g, = Eim g(L): N . Hence, the algorithm for calculating the optimal parameter

of the dynamic regularization p(L),, of the matrix estimate A(L) has the following form:

M(L)op =G L7 =N L™ (23)
The proposed algorithm of dynamic regularization (23) has the following advantages in
comparison with the known results [5, 7, 8, 10]:
— uniquely associates the optimal dynamic regularization parameter p(L),, with the
dimension N of the correlation matrix and the volume of the observed sample L;

— itis characterized by simplicity of computational operations in real time in the absence of a
priori information;

— removes the problem of choosing a regularization parameter under conditions of a priori

uncertainty about the initial data of the computational problem.
Remark 4. The decisive advantage of the regularization of p(L),, according to algorithm

(23) is the satisfaction of the estimates (19)-(21) of the matrix A™ of arbitrary dimension N to the
criterion "computational stability — consistency”. The validity of such an assertion reflects the
family of convergence trajectories 3,(L) of the estimate (21) presented in Figure 5 by solid lines

for specific values of N =10, N =30 and N =50 with optimal regularization (23).

Here, for comparison, the dashed lines show the trajectories of convergence B(L) of the
unregularized estimate (5). These dependencies illustrate the loss of computational stability of the
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consistent estimate (5) at L<N, which is not characteristic of estimate (21) with the optimal
dynamic regularization parameter p(L)

opt *

18[B,(L)], ==
Ig[B(L)]

-1.5

0 1 2 lg(L)

Figure 5 — Convergence trajectories 8, (L) (solid lines) and B(L) (dashed lines)

ILLUSTRATIVE EXAMPLE

Let us consider the application of the dynamic regularization method to solving the problem
of detecting an echo-signal at the output of an N -dimensional adaptive antenna array in the
conditions of external noise interference. Maximizing the signal-to-noise ratio q at its output

involves determining the parametric vector by inverting the estimate of the correlation matrix of
observations with the optimal dynamic regularization function

AL =[ AL +r(L)g 1]

qu(l.), dB

30 ! | ¢,~28,54B

20 ¢

8,,=N=10

-5
g=10"<<g opt

0

S,
g:]() >>g”p'
-10! .

1 2 lg(L)

Figure 6 — Transients that illustrate the effect of dynamic regularization u(L)z gL™
on the output value of the signal-to-noise ratio g, (L)

Figure 6 shows the transients that illustrate the effect of dynamic regularization u(L): gL™
on the output value of the signal-to-noise ratio q“(L) with the dimension of an adaptive antenna
array N =70. The presented transients correspond to the conditions of optimal regularization (23),
when g, = N; non-optimal regularization, when g =g, (g =107 << Qg and @ =10° >> Jopt );
self-regularization, when g =0. The potential value of the signal-to-noise ratio is indicated by a
dashed line and is g, =28,5dB.
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Comparative analysis of dependencies qp(L) shows that in the mode of optimal dynamic

regularization n(L),,, , the signal-to-noise ratio achieves its potential value ¢, in virtually a finite

opt !
number of iterations L =10, and the duration of the antenna array adaptation process in

comparison with the non-optimal regularization conditions is reduced by at least an order of
magnitude.

CONCLUSION

The presented studies address one of the problematic issues of finding optimal solutions to
inverse problems under conditions of a priori uncertainty. The optimal in the mean-square
approximation algorithm for dynamic regularization of sample estimates of the correlation matrix of
observations has been developed. It is proved that the parameter of the weight function should be
equal to the dimension of the correlation matrix. The advantages of optimal dynamic regularization
in the sense of computational stability and consistency of sample estimates of the correlation matrix
of observations are determined. Possessing the property of self-regularization of sample estimates
of the correlation matrix, this method represents an alternative to static regularization and allows:

—first, to exclude from the solution of the inverse problem the area of computational
instability, in which the information losses are maximum;

—secondly, to obtain a solution to the inverse problem in real time without using forecast data
and additional computational costs for finding the optimal value of the regularization parameter.

In terms of practical applications, the optimal dynamic regularization of sample estimates of
the correlation matrix of observations expands the capabilities of information systems associated
with the solution of incorrect inverse problems under conditions of a priori uncertainty about the
initial data.
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