MU®POBI TEXHOJOTIi, Ne 25, 2019

YAK 004.4°2
ENSURING OF WEB SERVICES SCALABILITY FOR “API FIRST” ARCHITECTURE

YEGOSHYNA G., VORONOY S., PALII O.

O. S. Popov Odesa National Academy of Telecommunications
1 Kuznechna St., Odesa, 65029, Ukraine
yegoshyna@onat.edu.ua

3ABE3INEYEHHSA MACHITABOBAHOCTI BEB-CEPBICIB
JJISI APXITEKTYPHU «API FIRST»

€TOILNHA I'.A., BOPOHOU C.M., O.T. TIAJIII

Ooecvra Hayionanvha akademis 36'a3xy im.. O.C. Ilonoesa,
1, eyn. Kysuneuna, m. Odeca, 65029, Yrpaina
yegoshyna@onat.edu.ua

Abstract. The article considers a possibility of solving the problem of improving scalability index of web
applications developed in accordance with the API-first strategy. It is shown that the task of increasing the indicator of
software portability is the most relevant for the development of mobile applications. It analyzes the current trend of
transferring the main business logic of applications from user devices to the network, which reduces the time spent on
developing the client part of the application and greatly simplifies the process of its implementation. These processes
affect the development of web-based applications also. The features of using the development strategies “desktop-first”
and “mobile-first” are considered. The advantages of using the API-first concept and architecture features of the API-
first web service architecture are considered. All requests for web services are carried out through a single and locally
standardized web API. The resource-intensive web pages formation can be made in a separate structure hosted on the
same machine or in a separate web server. In conditions of complete independence between the implementation of data
representations of the server part and the user interface of the client part, it turns out to be impossible to provide
instant access to the entire user audience in the updated list of application functions. The proposed solution is based on
the using of an intermediate system for dynamic generation of the user interface for the building of the web interface. At
the same time, this module should be general both for the further user interface building in the form of a web page, and
for its presentation using a dynamic interface assembled from graphic components provided by the application
operating system.

Keywords: web-service, API-first, module, interface, web-page, application, API-client, API-server, shared user
interface.

Anomauyin. YV cmammi po3zcisiHymo — MOJNCIUBICIb — GUPIWEHH NpoOneMu RONINUEeHHs — NOKA3HUKA
macwmabosanocmi 6e6-000amkis, KL po3pobusiomvcs y gionogionocmi 3i cmpamezieto « API-firsty. Ilokaszano, wo
3a0aya nioGuWenHs NOKA3HUKA NOPMAMUEHOCMI NPOZPAMHO20 3abe3nedentss ¢ Haubilbwl aKkmyaibHow 0is cgepu
PO3POOKU MOOIIbHUX 000amKi8. AHANI3YEMbCL CYUACHA MEHOeHYiss NepeHOCy OCHOB8HOI Oi3Hec-102iKu 000amKie 3
KOPUCMYBANHUYLKUX NPUCMPOIE Y Mepedicy, Wo 003605€ CKOPOMUMU YACO8I SUMPAMU HA PO3POOKY KIIEHMCLKOL
YacmuHu 000amKy ma 3HAYHO CRpowye npoyec it peanizayii. Bemanosneno, wo 3aznaueni npoyecu 6 mitl dice Mipi
BNAUBAIOMb | HA PO3GUMOK BeD-OPIEHMOBAHUX 000AMKI8, NOCMYNOBO CMUPAIOYU 2PAHL MidC 8eb-cepsicamu ma
NPUKIAAOHUMU RPOZPAMAMU Osl 0eCKMONHUX abo MobinbHux cucmem. Poseasinymo ocobaugocmi GUKOPUCIAHHSA
cmpameciii po3pobru «desktop-firsty ma «mobile-firsty. [Tokazani nepesacu suxopucmanns xonyenyii «API-firsty ma
pozenanymo ocobnueocmi apximexkmypu «API-firsty ge6-cepsicy, 6 sikitl 6ci 3anumu Ha 6UKOHAHHS NOCTYe 6eO-CepPBicy
30TUCHIOIOMbCA Yepe3 €OUuHUl, JTOKAIbHO cmandapmuzosanutl 6e6-APl inmepdbetic, a pecypcoemmne opmysanus eeo-
CMOPIHOK GUHOCUMbBCSL 8 OKpeMY CMPYKMypy HA mMoMy ¢ Xocmi abo Ha okpemuii eée6-cepeep. Becmanosneno, wo 6
VYMOBAX NOGHOT HE3ANEHCHOCMI Midic peanizayicto npedcmagiennsimu oanux (API) cepseproi yacmunu ma npusHayeHo2o
07151 Kopucmysaua inmepgheiicy KAeHmcbKoi Yacmunu npo2pamu, GUAGSEMbCSL HEMONCIUSUM 2APAHMYEAMU MUMMEGULL
docmyn 6cCill KOPUCMYBATbHUYLKOI ayoumopii 00 OHO81eH020 CHUCKY (YHKYil 0odamKy. 3anponoHosame piuieHHs
bazyembcst HA GUKOPUCTNANHI NPOMIJICHOT cucmemu OUHAMIYHOI 2enepayii KOpucmyeanbHuybKo2o inmepgeticy ons
Gopmyeanns eeb-inmepeticy cmopinox. Ilpu yvomy oanuil MoOyIb NOSUHHUL OYMU 3a2aNbHUM I OJi1 NOOAILULO2O
Gopmysanns inmepgeticy kopucmyeaya y euisioi 6e6-cmopinku, i ons i npedcmasients 3a 00NOMO20I0 OUHAMIYHOZO0
inmepgeticy, 3i0panoeo 3 epagiunux KOMNOHEHMIs, WO HAOAIOMbCS. ONEPAYIIHOIO CUCMEMOTO 000amKd.

Knrouosi cnosa eeo-cepsic, API-first, Mmooy, inmepgpeiic, se6-cmopinxa, dooamox, API-knicnm, API-cepsep,
shared user interface

65

MU®POBI TEXHOJOTIi, Ne 25, 2019

INTRODUCTION

A widespread trend in recent years is the desire to increase the portability of software - a
qualitative indicator responsible for the ability to use the same application in different application
runtimes. This process is most revealing in the field of mobile applications. If at the beginning of
the century the majority of application programs were intended for desktop computers, then, with
the development of mobile devices, the convergence of applications for desktop computers and
portable devices is already progressing at the level of the environment.

Web services architecture is currently one of the most topical issues in software development
since became actually the standard for interaction various applications operating on heterogeneous
platforms [1-3]. A concomitant process is the tendency to transfer the main “logic” of applications
from the user device to the network. If earlier most of the application software products were
completely independent applications, now you can observe a tendency to shift the main part of
applications to cloud platform servers. This approach can significantly reduce the development time
of the remaining client part applications for each of the target platforms. Instead of a complete list
of application functionality for each specific platform we have to adapt only the basic functions of
the formation and management of the user interface, as well as their interaction with the server part
of the application through information networks.

However, it is much more important that these processes affect the development of initially
web-based applications to the same extent, gradually erasing the line between web services and
application programs for desktop or mobile systems.

The scope of this work is to investigate a possibility of the extensibility index improving for web
applications developed in accordance with the API-first strategy by providing instant availability of the
functionality introduced by the developer of the server application in any client applications that support
the proposed dynamic user interface formation scheme.

“DESKTOP-FIRST” VS “API-FIRST” WEB SERVICE ARCHITECTURE

As classic approaches to designing web services development strategies such as “desktop-
first” and “mobile —first” can be distinguished. In the “desktop-first” case the application is
developed for clients of stationary systems and compatibility with mobile devices is provided as
necessary, but only after the main part of the project is completed. “Mobile —first” case the same
behavior, but with a priority for mobile platforms. Later the strategy called “API-first” was
developed, which is a kind of synergistic combination of the first two strategies and is built around
the concept of “web application programming interface”.

Consider an example of a classic web application built on the basis of the MVC design pattern
(see Figure 1) [4].

Within this interaction model client applications can be divided into three categories: web
client (web browser); installed client application for desktop computers; installed client application
for mobile devices.

As a response to a request from the user arriving at the controller the requested data is
selected from the database of the server application, its processing and structuring of information in
the model. Then, depending on whether the request came from the web client or the application
being installed, the information is transmitted to the web presentation module (where the
corresponding HTML page is formed and sent to the client side browser), or to the API presentation
module.

As a rule, all structures of the server side (with the exception of the database and file
resources of the web view) are on the same server. Thus, the load from processing the web and API
views on one device is added up.

66

NU®POBI TEXHOJOTIII, Ne 25, 2019

User

[

¥

Web-client

Figure 1 — Example “desktop-first” web service architecture

APlI-client Client-side
(browser)
‘. 1 L 2 API
T Server-side
[D — P [—— -5
v A4 I
Web-view Controller APl-view :
|
Model |
|
Web-server |

This fact can negatively affect the speed of forming the API server responses (as a rule,
interaction via APl consumes fewer computing and network resources), causing unnecessary delays
in the operation of the web service for mobile devices.

In turn, an application built in accordance with the concept of "API-first" could be represented
by the following architecture (see Figure 2).

User
[[
"
Web-client APLclient
(browser)
-~ -
___________ F———
|
Controller HTM L'. |
repl‘esenlatum |
|
L — API
N s S —— —_—__—_1l___

Figure 2 — Example “API-first” web service architecture

APl-processor
(Controller + view)

Model

Web-Api-server

DB

Client-side

Server-side

67

MU®POBI TEXHOJOTIi, Ne 25, 2019

In the case of the “API-first” an implementation of an API node is possible [6]. It implements
the entire business logic of the application. All requests for web services are carried out through a
single and locally standardized web API. The resource-intensive web pages formation can be made
in a separate structure hosted on the same machine or in a separate web server. This allows not only
to reduce the load on the main server, but also to delegate the development of not only installed but
also web clients of the web service to a third-party development team.

Also it is quite simply to implement it on a platform different from the main server (for
example, the main server application can be implemented as a compiled persistent Java application
hosted on Debian, while a web-view is compiled on a non-persistent application run by PHP on
another operating system).

The disadvantage of both architectures is that with the increase in mobility and portability of
each of their subsystems, their extensibility is significantly reduced. In conditions of complete
independence between the implementation of the data representation (API) of the server part and
the user interface presentation of the application client part, it is impossible to guarantee instant
access to the entire user audience of the application to the updated list of its functions.

So connecting a new functional module to the server side of the application starts the process
of updating client applications of the web service, which can be quite lengthy, especially if the
client application is exclusively in the area of responsibility of third-party developers. In the case of
the "classical" application structure, this only affects the list of client applications being installed
(since the application architecture itself provides for the dynamic generation of the user interface
based on the existing functionality for web clients). In the case of “API-first” architectures, the
delay extends to the development of the web presentation of the program also.

APl FIRST WEB SERVICE ARCHITECTURE WITH SUPPORT FOR SUI

The main goal is to formulate an approach of designing such applications that would provide
the web service developer of the server side with the opportunity to determine not only the structure
and format of the data provided by the client part, but also their presentation. However, this
approach should not limit the development of client applications in the possibilities of creating their
own user interface and a set of web service functions in their projects [5].

The proposed solution is creating of an intermediate system for dynamic generation of the
user interface similar to "classical" approaches [6] for generating the web presentation of the page
interface using HTML markup language tools (see Figure 3).

The difference is that the developed system should be general for further presentation of the
user interface as a web page, and for its presentation through the compiled application interface,
that was dynamically assembled from the provided graphic components of the operating system.

The inability to use HTML for these purposes based on the fact that HTML was and remains a
means for the final presentation of data, while the formation of a user interface with dynamic
content requires an approach that is much closer to the concept of page templates creating.

The advantage of this presentation method is that, in contrast to the “classical” architecture of
the page’s description distributed by the web-view, the proposed SUI-view (“shared user interface”)
allows the user to control the dynamic generation of the user application interface with server side.

Also this presentation method has a much smaller additional load on the application API
server. Thus, SUI is not a form of data presentation, which means that the presentation will not
change with every change in the transmitted content and could be transmitted once - at the
beginning of the client-server interaction session, or with the planned update of the SUI
representation from the client.

68

NU®POBI TEXHOJOTIII, Ne 25, 2019

Web-Api-server

User
v v
Web-client User interface
(browser) Representation by
1 Controller means of OF
Client-side SUl-representation
F 3
I Web-servery I
I Web - |
I representation by | |
I Controller | means of HTML | |
' SUL- |
I representation |
I k I
= —— API (data=SUI)

R T v]

! API-processor |)

| | Server-side

: Muodel SUl-processor |

| |

| |

| |

Figure 3 — Example API First Web Service Architecture with support for SUI
Thus, process of updating client systems to expand the functionality of the API server with
new functions, based on the SUI system, will be performed in the following order:
— to perform a connecting of a new functional module in the web service server application;

— the new web APIs are defined in the corresponding table of the API server (automatically
or manually); the table version field is incremented by one;

— the API client (whether it is a web server or an installed client application) requests the
status of the API server;

— if the version of the table of APIs is higher than that used (the data was found in the
response), the client requests updates;

— if the developer has implemented support for the SUI system in the client, the request also
contains a note about the need to update SUI representations that use the updated functions;

— the server generates a response from the list of web interfaces of the new system functions,
a compressed package of SUI representations of the user interfaces using them and sends them to
the client;

—the client application updates the saved interface template in accordance with the received
SUI descriptions and is ready to immediately provide the user with access to the updated functions
of the web service (without any additional coordination from its developer).

Depending on the client part developer tasks, support for the SUI-system could be limited to a
specific list of application functional modules, or disabled at all (for example, if a highly specialized

69

MU®POBI TEXHOJOTIi, Ne 25, 2019

application using a strictly limited list of web service functions is being developed, or it implements
independent and unique user interface).

On the other hand, the developer gets the opportunity to focus on specific ways of
representing the described SUI user interface in a specific application runtime leaving the task of
logically linking system functions and specific interface elements of the application form to the SUI
module.

CONCLUSION

There is considered a way to increase the extensibility of web services by reducing the delay
between the implementation of new functionality modules on the server and client side of the
application, which becomes achievable using the dynamic user interface generation system
proposed in the work.

The proposed system should:

— to serve as a link between the user interface of the application and the web service
functions defined by the APIs in accordance with the API First Web Service SUI Architecture;

— to be suitable for creating descriptions of graphical user interfaces of an application
without being tied to any particular runtime, programming language, or type of application being
developed;

— to expand the capabilities of developers in order to create portable and extensible web
services with the ability to control the user interface structure of client applications from the server.

REFERENCES

1 Fujita S. Dynamic Collaboration of Businesses Using Web-services // NEC Journal for advanced
Technology. — Vol. 1. — Ne 1. —P. 36-42.

2 Kaéniche M., Kanoun K., Martinello M. A User Perceived Availability Evaluation of a Web Based Travel
Agency // Proc. of IEEE Computer Society 2003 International Conf. on Dependable Systems and Networks (DSN
2003), 22-25 June 2003. — San Francisco, CA, USA, —2003. — P. 125-134

3 Web Services Activity Statement // W3C Process Document. <https: //www.w3.0rg/2002/ws/Activity >
accessed Oct. 22 20109.

4 Leonard Richardson. RESTful Web APIs 1st Edition. — O’Relly Media, 2013. — 406 pages.

5 Yegoshyna G.A., Voronoy S.M. Intellectualization of project management web services based on integration
with natural language processing modules // Hayxosi npayi OHAT im. O.C. Ilonosa. — 2019. C. — 94-101.

6 Fielding R. T. ‘REST APIs must be hypertext-driven <http://roy.gbiv.com/untangled/2008/rest-apis-must-be-
hypertext-driven> accessed Oct 22 2019.

REFERENCES
1 Fujita, S. “Dynamic Collaboration of Businesses Using Web-services.” NEC Journal for advanced Technology,
Vol. 1, No. 1, pp. 36-42.
2 Kaéniche, M., K. Kanoun, and M. Martinello. “A User Perceived Availability Evaluation of a Web Based Travel

Agency” Proc. of IEEE Computer Society 2003 International Conf. on Dependable Systems and Networks (DSN
2003). San Francisco, CA, USA, 22-25 June 2003, pp. 125-134.

3 Web Services Activity Statement: W3C Process Document. https://www.w3.0rg/2002/ws/Activity
accessed Oct. 22 2019.

4 Richardson, Leonard. RESTful Web APIs. 1st Edition, O’Relly Media, 2013.

5 Yegoshyna, G.A., and S.M. Voronoy. “Intellectualization of project management web services based on
integration with natural language processing modules” Naukovi pratsi ONAZ im. O.S. Popova, 2019, p 94-101.

6 Fielding, R. T. “REST APIs must be hypertext-driven.” http://roy.gbiv.com/untangled/2008/rest-apis-must-be-
hypertext-driven. Accessed 22 Oct 2019.

70

