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Abstract. Based on the fundamental concepts of multivariate complex statistical analysis and matrix theory,
estimation of correlation matrix of observations is obtained at the fixed signal level by maximum likelihood criterion in
information system with adaptive antenna array. This estimate has been proven to be consistent and sufficient statistics
for a correlation matrix of observations in the case of additive Gaussian background noise.
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Anomauin. Buxooauu 3 ocHO8HUX NOHAMb 6A2AMOMIPHO20 KOMNIEKCHO20 CIAMUCINUYHO20 AHANIZY Ma meopii
MAMpuyb, OMPUMAHA OYIHKA KOPEIAYIUHOL Mampuyi cnocmepesicelib npu (PIKCO8AHOMY PIGHI CUSHALY 34 Kpumepiem
MAKCUMALHOL npagoonodibnocmi 6 iHopMayiiHill cucmemi 3 A0ANMUBHOIO AHMEHHOI0 pewimkoio. JJoeedeno, wo ys
OYIHKA € CHPOMOICHOIO Ma OOCMAMHBLOI CIMAMUCTUKOIO OlIsl KOPENAYiiHOl Mampuyi cnocmepesicensb y GUNAOKY
NPULlOMy CUCHATLY HA (POHI AOUMUBHO20 2AYCIBCLKO2O UYMY.

Knwwuosi cnosa: xopensyitina mampuys, 2ayciécokuti 0azamomipHull KOMWIEKCHUL npoyec, WiibHICmb
timogipHocmetl, 000AMHO-BUZHAYEHA MAMPUYS, epMimosa @opma, Xapakxmepucmuyna QyHKyis, eubipkoea oyiHka,
CHPOMOJICHA OYIHKA, OOCMAMHS CINATMUCIMUKA.

INTRODUCTION

Input signal in information system with adaptive antenna array remains one of the main
methods of solution of the difficult tasks of signal detection and estimation of its parameters. To
solve these problems the correlation matrix R of vector processes y(t), which is a mix of the

useful signal s(t) and the additive noise component n(t) : y(t) =s(t) +n(t), is used.
The asymptotic form of correlation matrix of process y(t)is set as follows

)
R = lim = j y(®)-y" ®)dt,
0]

where ()" denotes the sign of Hermitian conjugate and T denotes the observation time.

Such matrix is Hermitian, positive definite. At Gaussian statistics of jamming’s and external
noises it contains all information on the processes observed in reception channels of adaptive
antenna array [1].

The exact correlation matrix R can be obtained only from corresponding theoretical models,
so in practice instead of it the following estimate is used
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lz (L)-y"(L). )

I_

This estimate is obtained from a finite number of training samples of the input vector process
in reception channels of adaptive antenna array and, as a result, it depends on the size L of this
sample [2].

The fact that estimate (1) is consistent and sufficient statistic for correlation matrix of
observations R was proved in the case when the input vector process is a steady multivariate real
Gaussian process [3,4] or a steady multivariate complex Gaussian process with a zero mean [5].
The last is fair in the case when the input vector process contains only a noise component in
reception channels. However, in the presence of a useful signal, the corresponding vector process
should be considered as a steady multivariate complex Gaussian process with mean value
s(t) = 0. According to the modern research conducted worldwide, estimate (1) is also used in the

case when the useful signal at entrance vector process is present. But, the legitimacy of such use, in
sense of consistency and sufficiency of this statistics, demands an additional proof.

The aim of work is to prove the fact that the estimate (1) is a consistent and sufficient
statistic for correlation matrix of observations R in case of a steady multivariate complex Gaussian
process with mean value s(t) = 0.

ESTIMATION OF CORRELATION MATRIX AT THE FIXED SIGNAL LEVEL

The set of complex amplitudes of the input process in separate reception channels of adaptive
antenna array with N elements at the any instant of t can be presented in the form of a N-
dimensional column vector

y(®) =[y.Oy,OK y, @] .

In practice, the input process is observed in discrete instants. By y(j); j =1 L we define the L
available samples of vector y(t), corresponding to the L instants which are selected after identical

intervals of At. The time interval between the samples is set in the way that samples are statistically
independent.

Let's assume that the width of frequency spectrum of the accepted fluctuations significantly
exceeds a band Af of the receiver and within this band its spectrum can be considered as uniform.

If the interval At >1/Af | N-dimensional random samples of the input process y(1),y(2),...,y(L) are
statistically independent among themselves [4].

Let's consider that L independent identically distributed N-dimensional complex Gaussian
random values y(j); j =1, L are samples of the size L from set

1 v _o\ iRy
(y/s ) NdetRe (y-s) R “(y S)_ 2)

Then, their collateral probability density which is called likelihood function [6], has the
following form

A(R)=p(y(®),y(2),... y(L)) = HIO(Y(J) H;z“ wRE e V9 RI0)9)

=W~exp[2(y(j>s)‘*w<y( j)—s)j. )
T ae j=1

As y(j); i =1L are fixed values of sample and correlation matrix R depends on existence
of the useful signal S(t), the likelihood function can be considered as function from R . Those
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values R at which function A(R) reaches a local maximum is the most likely estimate R for

correlation matrix R . In addition, several auxiliary statements need to be proved.

Lemma 1. If A denotes an Hermitian positive define matrix, then the characteristic function
0) with respect to the density (2) of the Hermitian form

Ea=(y-9)"A(y-9)

(I)R,A(

D, . (0)=det (1 -i0RA). (4)
Proof: Since
I p(y/s;R)dy =1,

y
from (2) we receive

H,-1
| 1 -9 Ry agy o,
L7 detR

Consequently,

detR = Jl;ziN g U R 0s)gy, (5)

Characteristic function @ , (0) of Hermitian form E, is an expectation of a random value of
e'’"A [6].
Thus, taking in consideration (5) and the properties of determinants [7], we receive

D A (0)=M [eie(y*s)HA(yfs)} =

. H -1 _
_ jele(y—S)HA(y—S) - 1 e (y—s) R (yfs)dy _ det—l R. det(R—l i OA) 1 _
v 7" detR

=det ' R-det (R —i0A)=det *(R-R*~i0RA) =
=det™(1-iORA). (6)
Lemma 2. If A denotes an Hermitian positive define matrix, then
M [(y—s)HA(y—s)J=tr(PA). (7
Proof: According to the definition

M[(y=s)" A(y=s)|=[(y-5)" Aly=s) p(y/s:R)dy =

= [(y=)" Aly=s) —rme @0y
Y 7N detR
From (6) we receive

d
de

1 Ry
N
7" detR

"
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1 9'riys

. )dy =
oo 7 detR Y

= [li(y=5)" A(y=s) e 20

(51" A ) e

Thus, taking in consideration (4), the expression (7) can be presented in the form

M (=9 Ay =5) |- D (0

e_(y_s)H R—l(y_s)dy —iM |:(y—S)H A(y—S)i|

. d drr -
:—|£[det (I-i0RA) |

0=0 0=0

:—i{—det‘z(l —iORA)-%det(l —ieRA)}

0=0
. d .
=i —det(1-i6RA) (8)
de 0=0
Let matrix elements RA={c }; j.k =1,N. So,
1-i60,, —i60, L —i0oy
-0 1-i6 L i
det(1-i0RA)=| % Tz 7an
L L L L
—-i0o,, -i6oy, L 1-i00,,
and, according to the rule of derivation of n-order determinants [8]
—-io, —-lo, L -ioy, 1 0 L 0
0 1 L 0 0 1 L 0
idet(l —-iRA) = +L + =
de 60 L L L L L L L L
0 0 L 1 -loy,, -loy, L —loy
=—i oy, —ioy,—...—1 oy =—itr(RA). 9)
Then, considering (9), expression (8) takes the form
M|(y-5)" A(y-s)|=i(-itr(RA))=tr (RA).
Let's enter a vector of sample averages of the input vector process
L le .
y ==2y(i),
L=
and sample correlation matrix
L le .
R =EZV(J)'VH(J)- (10)

=1

Lemma 3. The sample correlation matrix R" is the consistent estimate of correlation matrix
of observations R.

Proof: The sample correlation matrix R* is the consistent estimate of correlation matrix R if
Vef O p( R*—R‘f 5)—)0 at L—>oo.

To prove that we use Kullback-Leybler divergence [6] (or the relative entropy) between two
probability distributions
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\ . p(Y/siRY)
D(R/R ):;[ p(y/s;R) Inmdy

as an index of average information from observation in advantage R".

-1
As R and R* are positive definite matrixes, R*and (R) exist and are also positive
definite Hermitian matrixes. Then, on the basis of a lemma 2 and formulas (2), we receive

D(R/R)=[p(y/s:R)[Inp(y/s;R")~Inp(y/s;R) |dy =

y

={p(y/s; R)['”jeits ~(y-s)"(R7) " (y—s)+(y-s)" Rl(y—s)}dy=
:Inj;ts'l‘ p(y/s;R) dy .y[(y—s)H(R*)_l(y—s)p(y/s;R)dy+

=[(=s) R y=s)p(y/siR)dy=In LR wr(R(R))+ur(RRY)-
detR

e —tr(R(R*)l)+tr(l).

It’s apparent that D(R/R") -0, if R" >R at L—>co.m

Further, for the sum in the exponent of likelihood function (3), by means of properties of a
trace of the sum and a trace of a matrix product [7], we receive

ZL:(y(j)—s)H Rl(y(j)—s)zgtl’[(y(j)_s)H Rl(Y(j)—S):|=

=

—Ztr[ (y(i)-s)(y(i)-s }—t{ ‘lZ( -s)(y/( )—S)H}. (11)
Let's notice that

—Z( )-s)(y(i)-s)" = ZV(J) y (J)——Zy(J) s +s-s"

=R -2y -s"+s.s" =R +y" - (y)" —2y"-s" 455" -y (y) =

=Ry )y )y )
Then, (11) has the form

L

Z(y(j)—s)H R*(y(j)-s)= Ltr[R‘lR*]+

=1
+L(y* —s)H R‘l(y* —s)— Ly”* R‘l(y*)H : (12)

Theorem. The sample correlation matrix R™ is a sufficient statistics for correlation matrix of
observations R .

Proof: According to the sign of factorization [3], statistics is sufficient if likelihood function
can be presented as a product of two non-negative multipliers, when one of which depends on this
statistics and estimated parameters, but another one doesn't depend on this statistics.
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When substituted (12) in likelihood function (3), we receive

,r—l*7 *7SH’1 *7S+*’1*H
A(R)=%e L[ RER Ly ) RO Ly RGO
(7z detR)
_ 1 . e—L()’*—s)HR’l(y*—s)*-Ly* R—l(y*)H .e—Ltr[R_lR*] (13)
(7Z'N detR)

Thus, sample correlation matrix R* is a consistent and sufficient estimate of correlation

matrix of observations R .

CONCLUSIONS

The sample correlation matrix R* (10) coincides with the estimateR, therefore the

legitimacy of estimate (1) at the fixed level of the useful signal s(t) = Ois proved.

Besides, if the useful signal is absent s(t) =0, likelihood function (13) has the form

A(R) = ;Lethr[RflR*l
(7ZN det R)

that completely coincides with the result received in [5].

In the expression of likelihood function (13)

y* R (y*) HZ(y* —S)H R—l(y* —S)f 0,

as R is a positive definite and ‘y* z”y*—st 0. It means that likelihood function A(R)

reaches the maximum value when R*R* -1, that is when R"=R—>R at L. So, the
estimate (1) is the most plausible estimate also in case when the useful signal at vector process
y(t) is present.
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